Guided Example #3 - Variance

Find the variance.
35, 15, 20, 15, 35, 45, 40, 50, 60, 25

A. 15.24     B. 223.22     C. 49,827.17     D. 3.90

 

Step 1

Find the sum of the values:
Σx=15+15+20+25+35+35+40+45+50+60=340

Step 2

Square each value, and then find their sum:
Σx2=152+152+202+252+352+352+402+452+502+602=13650

Step 3

Substitute in s2=Σx2-(Σx)2nn-1, and solve.
s2=Σx2-(Σx)2nn-1=13650-(340)2109=223.22

Step 4

Therefore the variance is 223.22.
The standard deviation is s=223.22=15.24.

All Steps

Find the sum of the values:
Σx=15+15+20+25+35+35+40+45+50+60=340

Square each value, and then find their sum:
Σx2=152+152+202+252+352+352+402+452+502+602=13650

Substitute in s2=Σx2-(Σx)2nn-1, and solve.
s2=Σx2-(Σx)2nn-1=13650-(340)2109=223.22

Therefore the variance is 223.22.
The standard deviation is s=223.22=15.24.