Guided Example #3 - Variance
Find the variance.
35, 15, 20, 15, 35, 45, 40, 50, 60, 25
A. 15.24 B. 223.22 C. 49,827.17 D. 3.90
Step 1
Find the sum of the values:
Σx=15+15+20+25+35+35+40+45+50+60=340
Step 2
Square each value, and then find their sum:
Σx2=152+152+202+252+352+352+402+452+502+602=13650
Step 3
Substitute in s2=Σx2-(Σx)2nn-1, and solve.
s2=Σx2-(Σx)2nn-1=13650-(340)2109=223.22
Step 4
Therefore the variance is 223.22.
The standard deviation is s=√223.22=15.24.
All Steps
Find the sum of the values:
Σx=15+15+20+25+35+35+40+45+50+60=340
Square each value, and then find their sum:
Σx2=152+152+202+252+352+352+402+452+502+602=13650
Substitute in s2=Σx2-(Σx)2nn-1, and solve.
s2=Σx2-(Σx)2nn-1=13650-(340)2109=223.22
Therefore the variance is 223.22.
The standard deviation is s=√223.22=15.24.