Trigonometry for Manufacturing

Introduction

- Trigonometry is a branch of mathematics that means "measurement of, with and by means of triangles" to help you solve problems.
\square Trigonometry is useful to Drafters, Design engineers (3-D), manufacturing technicians, and machinists (and others too.)
- Trigonometry is applied for making things by machinists to position holes, calculate height, length of angle cuts etc...

This presentation will give an brief overview of how a machinist uses trigonometry to make a part.

Machining application of Trig

- Determine the depth d of the groove machined in this aluminum block.

$$
d=0.46 "
$$

Labeling Right Triangles

- The hypotenuse is easy to locate because it is always found across from the right angle.

Drilling Holes

Here is a technical drawing of a flange containing five bolt holes. This is typically all the information that the engineer gives to the machinist to make a part. Notice that only one hole location is given, and all the others have to be calculated or
 inferred.

The machinist uses Trigonometry to calculate these hole locations.

Positioning Holes

Notice that all hole dimensions will be off the center of the bolt circle, or X 0, Y 0.

Cont...

For the first hole, we see that the X value is zero and the Y value is the radius. They are both in a positive quadrant.

The first hole is at location:
X 0
Y 1.000

Y										
					7					
					6					
					5					
					4					
					3					
					2					
					1					
	-6	-5-4	4-3	-2-1	0	1	23	45	67	
					-1					
					-2					
					-3					
					-4					
					-5					
					-6					
					-7					

Contra.

Trig is as follows:
360 / number of holes x (hole number -1)

360* $/ 5$ holes $=72^{*}$
$72 * \times\left(2^{\text {nd }}\right.$ hole -1$)=72^{*}$
$\mathrm{X}=(\mathrm{SIN} 72) \times 1.000$ radius

$\mathrm{X}=0.951$
$\mathrm{Y}=(\operatorname{COS} 72) \times 1.000$ radius
$\mathrm{Y}=0.309$

The second hole is at location:
X 0.951
Y 0.309

Trig is as follows:
360 / number of holes x (hole nt
360* $/ 5$ holes $=72^{*}$
$72 * \times\left(3^{\text {rd }}\right.$ hole -1$)=144^{*}$

$X=(\operatorname{SIN} 144) \times 1.000$ radius
$\mathrm{X}=0.588$
$\mathrm{Y}=(\operatorname{COS} 144) \times 1.000$ radius
$\mathrm{Y}=-0.809$
The third hole is at location:
X 0.588
Y-0.809

Cont...

Trig is as follows:
360 / number of holes x (hole number -1)
360* $/ 5$ holes $=72^{*}$
$72 * \times\left(4^{\text {th }}\right.$ hole -1$)=216^{*}$
$\mathrm{X}=(\operatorname{SIN} 216) \times 1.000$ radius
$X=-0.588$
$\mathrm{Y}=(\operatorname{COS} 216) \times 1.000$ radius
$\mathrm{Y}=-0.809$

The fourth hole is at location:
X - 0.588
Y - 0.809

Contra.

Trig is as follows:
360 / number of holes x (hole number -1)
360* / 5 holes $=72^{*}$
$72 *$ x ($5^{\text {th }}$ hole -1) $=288 *$
$\mathrm{X}=(\operatorname{SIN} 288) \times 1.000$ radius
$X=-0.951$
$\mathrm{Y}=(\operatorname{COS} 288) \times 1.000$ radius
$Y=0.309$

