Guided Example #6 - Logarithms to the Base e

In the previous section we studied the natural exponential function with base e, f(x)=ex. In this section we will study its inverse the natural logarithm of x, f(x)=logex, which is also written as ln x. logex=lnx. All the rules for common logarithms apply to the natural logs.

 

Example

Solve LaTeX: 4\log_3\left(2e\right)-3\log_e\left(3e\right)4log3(2e)3loge(3e)

LaTeX: =\log_e\left(2e\right)^4-\log_e\left(3e\right)^3=loge(2e)4loge(3e)3

LaTeX: =\log_e\left(\frac{\left(2e\right)^4}{\left(3e\right)^3}\right)=loge((2e)4(3e)3)

LaTeX: =\log_e\left(\frac{\left(16e^4\right)}{\left(27e^3\right)}\right)=loge((16e4)(27e3))

LaTeX: =\log_e\left(\frac{16e}{27}\right)=loge(16e27)

LaTeX: =\log_ee+\log_e16-\log_e27=logee+loge16loge27

LaTeX: =1+\log_316-\log_327=1+log316log327

Practice 1:

Solve LaTeX: \log_a\left(2p+1\right)+\log\left(3p-10\right)=\log_a\left(11p\right)loga(2p+1)+log(3p10)=loga(11p) for LaTeX: p>4p>4
LaTeX: \log_a\left[\left(2p+1\right)\left(3p-10\right)\right]=\log_a\left(11p\right)loga[(2p+1)(3p10)]=loga(11p)
LaTeX: \left(2p+1\right)\left(3p-10\right)=11p(2p+1)(3p10)=11p
LaTeX: 6p^2-28p-10=06p228p10=0
LaTeX: \left(3p+1\right)\left(p-5\right)=0(3p+1)(p5)=0
LaTeX: 3p+1=03p+1=0 or LaTeX: p-5=0p5=0
LaTeX: p=-\left(\frac{1}{3}\right)p=(13) or LaTeX: p=5p=5
Since LaTeX: p>4p>4, then LaTeX: p=5p=5 is the solution.

Practice 2:

Find the inverse of LaTeX: \log_39xlog39x
Let LaTeX: y=f_1xy=f1x, then LaTeX: x=\log_39yx=log39y (interchange x and y)
LaTeX: 3^x=9y3x=9y
LaTeX: \left(\frac{3^x}{3^2}\right)=y(3x32)=y
LaTeX: 3^{x-2}=y3x2=y
LaTeX: 3^{x-2}=f^1\left(x\right)3x2=f1(x)