Guided Example #1 - Logarithmic Equations

The equation

LaTeX: \log_416=2log416=2

tells us that the exponent is 2, the base is 4 and the value is 16.

LaTeX: \log_416=2\:\longleftrightarrow\:4^2=16log416=242=16

In general,

LaTeX: \log_bc=a\:\longleftrightarrow\:b^a=c\left(b>0,\:b\ne a\right)logbc=aba=c(b>0,ba)

or

LaTeX: \log_{base}\left(power\right)=exponentlogbase(power)=exponent

A power is something of the form r for any real number r, and it is called the “rth power of x.”

Example 1

Write LaTeX: 3^2=932=9 in logarithmic form.

 

2 is the exponent.

The base is 3.

And the power is 9.

So we write \log_39=2log39=2

Example 2

Write LaTeX: \log_a\left(\frac{1}{a}\right)loga(1a) in exponential form.
Since \log_bc=a\:\leftrightarrow\:c\left(b>0\:and\:b\ne1\right)logbc=ac(b>0andb1), we know that a is the base, -1 is the exponent, and \frac{1}{a}1a is the power, therefore the exponential form is a^{-1}=\frac{1}{a}a1=1a

Example 3

Solve for x. LaTeX: \log_5x=2log5x=2log5x=2
Rewrite \log_5x=2log5x=2 in exponential form: 5^2=x\:\Longleftrightarrow\:x=2552=xx=25

Example 4

Solve for x. LaTeX: \log_x27=3logx27=3logx27=3
Rewrite \log_x27=3logx27=3 in exponential form: x^3=27\:\Longleftrightarrow\:\sqrt[3]{x^3}=\sqrt[3]{27}\:\Longleftrightarrow\:x=3x3=273x3=327x=3

Example 5

Find the value of LaTeX: \log_216\(\log_216\)
Rewrite \log_216log216 in exponential form: 2^x=16\:\Longleftrightarrow\:x=42x=16x=4