Guided Example #2 - Natural Numbers

Guided Example

Here we show why a result that is related to the Binomial Theorem, called Pascal's Rule, is true. Pascal's Rule states (mk)+(mk-1)=(m+1k)

 

Step 1

(mk)+(mk-1)=m!k!(m-k)!+m!(k-1)!(m-k+1)!

Step 2

=m!k(k-1)!(m-k)!+m!(k-1)!(m-k+1)(m-k)!

Step 3

=m!(m-k+1)+km!k(k-1)!(m-k+1)(m-k)!

Step 4

m!m+m!k(k-1)!(m-k+1)(m-k)!

Step 5

m!(m+1)k!(m-k+1)!

Step 6

(m+1)!k!(m+1-k)!

Step 7

(m+1k)

All Steps

(mk)+(mk-1)=m!k!(m-k)!+m!(k-1)!(m-k+1)!

=m!k(k-1)!(m-k)!+m!(k-1)!(m-k+1)(m-k)!

=m!(m-k+1)+km!k(k-1)!(m-k+1)(m-k)!

m!m+m!k(k-1)!(m-k+1)(m-k)!

m!(m+1)k!(m-k+1)!

(m+1)!k!(m+1-k)!

(m+1k)