Guided Example #2 - Natural Numbers
Guided Example
Here we show why a result that is related to the Binomial Theorem, called Pascal's Rule, is true. Pascal's Rule states (mk)+(mk-1)=(m+1k)
Step 1
(mk)+(mk-1)=m!k!(m-k)!+m!(k-1)!(m-k+1)!
Step 2
=m!k(k-1)!(m-k)!+m!(k-1)!(m-k+1)(m-k)!
Step 3
=m!(m-k+1)+km!k(k-1)!(m-k+1)(m-k)!
Step 4
m!m+m!k(k-1)!(m-k+1)(m-k)!
Step 5
m!(m+1)k!(m-k+1)!
Step 6
(m+1)!k!(m+1-k)!
Step 7
(m+1k)
All Steps
(mk)+(mk-1)=m!k!(m-k)!+m!(k-1)!(m-k+1)!
=m!k(k-1)!(m-k)!+m!(k-1)!(m-k+1)(m-k)!
=m!(m-k+1)+km!k(k-1)!(m-k+1)(m-k)!
m!m+m!k(k-1)!(m-k+1)(m-k)!
m!(m+1)k!(m-k+1)!
(m+1)!k!(m+1-k)!
(m+1k)