Guided Example #1 - Inverse
Find the inverse, A-1, of A=[4253]
a. [3⁄2-1-5⁄22]
b. [-4-2-5-3]
c. [3-2-54]
d. None of the above
The correct answer is A. To see why, view each of the steps below.
Step 1
Interchange leading diagonal elements:
4→t;3; 3→;4
[3254]
Step 2
Change signs of the other 2 elements:
[3-2-54]
Step 3
Find the determinant of A
|4253|=4(3)-5(2)=12-10=2
Step 4
Multiply result of [2] by 1detA
A-1=1detA[(3,-2),(-54)]=12[3-2-54]=[3⁄2-1-5⁄22].
All Steps
Interchange leading diagonal elements:
4→t;3; 3→;4
[3254]
Change signs of the other 2 elements:
[3-2-54]
Find the determinant of A
|4253|=4(3)-5(2)=12-10=2
Multiply result of [2] by 1detA
A-1=1detA[(3,-2),(-54)]=12[3-2-54]=[3⁄2-1-5⁄22].