
Introduction
Unit 5

Secure Mobile Application

Development

Index

1. Basic Principles of Secure Development

Secure Software Development Life Cycle

S-SDLC in agile environments

2. Good Practices in Secure Development

3. Good Practices in Mobile Development

Protection of the application

Sensitive data management

Logs and sensitive data leakage

HTML components in mobile applications

Communication between applications

Authentication in mobile applications

4. Laboratory

Android

iOS

5. Research exercises

Assessment test
2

2

3

4

5

1

Video

Basic Principles of Secure

Development

 Vulnerabilities and security problems may affect a software product during the

whole development process if:

 Security requirements are not described during the analysis stage.

 Designs created have security failures.

 Vulnerabilities are created during the implementation stage.

 The software is deployed inappropriately.

 Security incidents occurred have not a proper response.

 Such problems directly affect the developed software and information stored, but

it may also affect:

 Other applications that are executed in the shared environment.

 The user’s system (including mobile devices).

 Other systems that interact with the software to develop.

5

Introduction

Principles of Secure Development

Secure Software Development Life

Cycle

 The Secure Software Development Life Cycle (S-SDLC) is the software

development process that implements security as a transversal element during

the whole development cycle.

 The implementation of security as a transversal element of the software

development is called “Security by Design”.

 Most vulnerabilities may be solved in the application development stage,

since many of such vulnerabilities are created when development processes and

their associated controls are not implemented properly.

 The S-SDLC takes into consideration all the security aspects that may be

involved in the software development from the beginning of the process.

 It allows developers to detect vulnerabilities during early stages of development.

□ It saves costs in vulnerabilities detected in systems that are in production.

 It allows developers to take into consideration requirements according to different

regulations and standards from the beginning of the development process.

□ It saves costs in the implementation of new requirements or functionalities related to compliance.

7

Introduction

Secure Software Development Life Cycle

 There are processes similar to the S-SDLC:

 OWASP CLASP (Comprehensive, Lightweight Application Security Process):

□ https://www.owasp.org/index.php/Category:OWASP_CLASP_Project

 Microsoft Secure Development Life Cycle:

□ Developed by Microsoft, but not applicable to all types of development.

□ https://www.microsoft.com/en-us/sdl/

 Digital’s Security Touchpoints:

□ Developed by Gary McGraw.

□ http://www.swsec.com/resources/touchpoints/

 NIST 800-64:

□ Set of security considerations suggested by the NIST that should be taken into consideration

during the SDLC.

□ http://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-64r2.pdf

 Generally, all the models include a series of security activities for the

development life cycle.

8

Basic Characteristics of S-SDLC

Secure Software Development Life Cycle

https://www.owasp.org/index.php/Category:OWASP_CLASP_Project
https://www.microsoft.com/en-us/sdl/
http://www.swsec.com/resources/touchpoints/
http://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-64r2.pdf

9

Stages

Secure Software Development Life Cycle

Training

Requirements

Design

Implementation

Verification

Deployment

Response

 It is not an S-SDLC stage strictly, but it is essential to perform it.

 The technical staff involved in the development of the project have to be able to

perform all the additional tasks that the S-SDLC implies.

 They should be aware of the following concepts:

 Secure architectures.

 Threat Modelling.

 Secure encryption.

 Penetration testing.

 Security and privacy practices.

 This stage is essential for the different roles involved in a development process

to know their responsibilities from the point of view of security.

10

Training

Secure Software Development Life Cycle

 During this stage, apart from traditional functional requirements of the

application, further security, privacy and regulatory requirements should also be

taken into consideration.

 A set of minimum security requirements should be defined.

 As in the case of the rest of requirements, it is important to implement the necessary

measures to follow its development during the SDLC.

 Another possible mechanism would imply defining a set of security metrics that

should be maintained during all the development stages:

 Establish security levels for vulnerabilities.

 Explain the acceptable maximum levels for each development stage.

□ E.g.: a product cannot pass the launch stage if it includes any critical vulnerability.

 In order to facilitate the identification of requirements, the following processes are

carried out:

 Identification of roles, capabilities and resources of the application.

 Risk analysis.

 Definition of abuse cases.

11

Requirements

Secure Software Development Life Cycle

 During this stage, the security solutions

that will cover the security requirements

explained in the previous stage should

be described.

 Furthermore, in this phase, functional

details that have not been specified

during the requirements stage should

be described.

 Example: cryptographic algorithms to

use.

 The S-SDLC adds a set of principles to

this stage that should be followed for

the design of the system. Such

principles should be taken into

consideration transversally during the

design of the system.

12

Secure Software Development Life Cycle

Design

 Defence in depth:

 It implies creating different security layers so that, in case one of them fails, the system

will not be compromised.

 It requires the design of different defence strategies for the same threat.

 Fail securely:

 It means that all the fails will take the system to a status that is considered as secure

(without losing confidentiality, integrity or availability).

 Least privilege:

 Each user or process should only have the least amount of privilege required to

perform the necessary tasks.

 Privileges should also be granted for the shortest possible time.

 Separation of duties:

 The performance of any critical activity on the system should require the participation

of two or more entities.

 It is aimed at eliminating single points of failure.

13

Design – Principles of Secure Design I

Secure Software Development Life Cycle

 Keep security simple:

 When two solutions provide the same security level, generally, the less complex one

should be used.

 In general, the simpler, the smaller attack surface.

 Supervision:

 During the execution of any task (access, writing, modification), it is important to verify

that the user or process that is executing it has the proper authorisation.

 In order to avoid synchronisation issues, it is recommended not to use authorisation

caches.

 Open design:

 The details of the system design should be open in order to avoid security by

obscurity.

 This principle is useful to create secure systems from the design.

 It ensures that the design publication or revision will not imply directly a serious

security incident.

14

Design – Principles of Secure Design II

Secure Software Development Life Cycle

 Least common mechanism:

 This principle advises not to use the same security mechanism, even if it is common to

various processes or users if they have different levels of privilege.

 Acceptability:

 The security mechanisms of the system should be designed taking into consideration

the acceptability of users.

 If users face difficulties when using security characteristics, they will look for different

mechanisms to avoid them, rendering them useless.

 Weakest points:

 The security of an entire system will depend on its weakest point.

 Reuse:

 It is preferable to use already existing and verified components than the creation of

new ones that may increment the risk of vulnerabilities and the attack surface.

15

Design – Principles of Secure Design III

Secure Software Development Life Cycle

 It implies specifying the entry points to the

system in an structured way. This task

should be performed by the designer.

 The entry points of the application can be

divided into:

 Network.

 File System.

 User.

 For each entry point, the following

elements should be identified:

 Resources accessible through it.

 Roles that have access to such

access point.

 It allows users to identify resources

leakages to roles that should not have the

required privileges.

16

Secure Software Development Life Cycle

Design – Surface of Attack

 As explained in unit 3, risks and

threats that may affect a given system

should be catalogued and assessed.

 It will be the first task carried out by an

attacker.

 If it is not performed, the protection of

systems is reduced.

 Threat != vulnerability. Threats are

persistent.

 The threat modelling is an iterative

process that implies:

17

Secure Software Development Life Cycle

Design – Threat Modelling

Assets

ThreatsControls

Validation

 Identify assets or capabilities existing on the system by using a diagram. It is

important to check whether they coincide with the ones identified in the

documentation.

 For each asset or capability, identify potential threats.

 This task requires the analyst to have some creative skills.

 For each threat, assess the risk existing:

 Use threat trees that describe the different steps that should be followed by the

attacker in order to materialize threats.

 Measure factors such as: impact, reproducibility, exploitability and affected users.

 For each threat, identify controls that can be implemented to mitigate it.

 At the end of the process, as many threats as possible should be covered.

18

Design – Threat Modelling

Secure Software Development Life Cycle

 STRIDE is a threat model that groups them into six categories:

 Spoofing: a system or user is masqueraded.

□ Example: a person or program tries to act as the system administrator.

 Tampering: modification of data or code.

□ Example: modification of the source code of the application used to deactivate

protections.

 Repudiation: denial of a specific action to have been carried out.

□ Example: “I did not send that message”.

 Information Disclosure: access to a piece of information by an entity that has no

credentials to do it.

□ Example: personal information leaked to the public.

 Denial of Service: blocking or degrading a service.

□ Example: block of servers due to a high number of requests.

 Elevation of Privilege: increase of capabilities without the proper authorisation.

□ Example: a user becoming administrator.

19

STRIDE

Secure Software Development Life Cycle

 In order to mitigate the possible impact of a security breach, the develop controls

below are established for such threats.

20

STRIDE - Controls

Secure Software Development Life Cycle

Threats Security control/service

Spoofing Authentication

Handling Integrity Controls

Repudiation Non-repudiation methods

Information disclosure Confidentiality mechanisms

Denial of service Availability

Elevation of privilege Authorisation

 In the traditional SDLC, this stage implies the encryption of the different functions

of the software product to develop.

 S-SDLC activities are aimed at helping developers to implement the required

functionalities as securely as possible.

 The main contributions of the S-SDLC to this stage are guides and good

practices on secure encryption (they will be covered in-depth in the following

sections).

 Furthermore, during the implementation stage, an S-SDLC should consider the

following activities:

 Secure configuration of the development environment.

 Revision of the application’s source code.

 Revision of third parties’ elements.

21

Implementation

Secure Software Development Life Cycle

 An official configuration should be defined for the development environment that

will be used during the implementation of the software product.

 The configuration should specify:

 Valid operative system or systems (including versions).

 Tools supported in the development (including versions):

□ IDE.

□ Versions control system.

 Remote access restrictions.

 The required mechanisms to apply and restrict the configuration of work stations

to the accepted level should be included:

 User accounts restrictions.

 Pre-installed environments.

22

Implementation - Secure Development Environment

Secure Software Development Life Cycle

 XcodeGhost is a clear example of problems that can be caused if such

guidelines are not followed.

 A group of cyber-criminals modified and made public a version of the XCode IDE

for iOS and Mac OS on a Chinese server.

 The modification injected malicious code in the compiled version of iOS

applications.

 Due to the slow downloading speed from US servers, multiple Chinese

developers decided to download the version available on their country’s servers.

 When using the modified version to develop their applications, many developers

created malicious applications unintentionally that were then published on the

App Store.

 https://developer.apple.com/news/?id=09222015a

 https://www.incibe.es/technologyForecastingSearch/CERT/Bitacora_de_cibersegurida

d/ataque_appstore

23

Implementation - Secure Development Environment

Secure Software Development Life Cycle

https://blogs.mcafee.com/consumer/xcodeghost-malware-hits-app-store/
https://developer.apple.com/news/?id=09222015a
https://www.incibe.es/technologyForecastingSearch/CERT/Bitacora_de_ciberseguridad/ataque_appstore

 The revision of the application’s source code allows users to identify

vulnerabilities that are introduced during the implementation stage.

 Automatic tools for static analysis, such as the one reviewed in unit 3, make this

task easier, but they are not able to find some vulnerabilities that require a

manual revision.

 The review of code is an additional task to the execution of unit and integration

tests that are defined within the traditional SDLC. It is not equivalent and should

never substitute it.

 The review of the source code may be carried out:

 Lightly during the implementation process.

 Formally, once a part of the implementation process has ended.

24

Implementation – Code Review I

Secure Software Development Life Cycle

 Regarding lightweight reviews of the source code, it is possible to perform them

in the following ways:

 Pair-programming techniques: two people develop code together in the same

machine, supervising the written code mutually.

 External review: the author explains the code to other developer that verifies it.

 Assisted review: developers use semi-automatic tools that enable the identification of

code problems during the programming.

 Commit review: when there is a commit on the version control system, a tool is

launched in order to:

□ Send the element automatically via email to the reviewers.

□ Conduct an analysis of the commit with an analysis tool integrated with the version control.

– Example: https://www.pullreview.com/ or https://codeclimate.com/

25

Implementation – Code Review II

Secure Software Development Life Cycle

https://www.pullreview.com/
https://codeclimate.com/

 During the implementation stage, it may be necessary to use third parties’ tools

and libraries.

 Controls made on our own code should also be implemented on these kind of

libraries.

 Specifically, the following activities will be performed:

 If the source code is available, perform an analysis process as the one described

before.

 Review vulnerabilities or possible security problems related to the library version used:

□ Secure storage.

□ Encrypted communications.

□ Validation of input data.

□ Problems of misconfiguration or data exposure by default.

 Check the use of functions or elements that have been declared to be deprecated by

developers.

26

Implementation – Third Parties’ Elements

Secure Software Development Life Cycle

 On the traditional SDLC, this stage includes all the activities aimed at verifying

that the software product works as it is described in the requirements.

 S-SDLC tasks during the verification stage allow users to perform security

verifications directly on software elements that have been implemented in the

previous stage:

 Dynamic Analysis: studied in Unit 3. It enables the verification of the system’s

security properties and their behaviour by executing it.

 Fuzzing: it is a part of the dynamic analysis. It is checked whether controls

implemented in entry points of the system control the possible entries properly .

 Revision of the attack surface: once the code is finished, it is possible to verify that

the attack surface identified in previous stages of the S-SDLC corresponds to the real

one.

27

Verification

Secure Software Development Life Cycle

 In this stage, the software product is prepared for its deployment.

 Regarding the S-SDLC, this stage includes activities to cover security aspects of

the product beyond its launch date.

 Incident response plan:

 It allows users to mitigate the scope of security incidents, reduce risks, and costs of an

incident.

 It should clearly identify events to consider when declaring the existence of a security

incident.

 For each incident, actions to carry out should be described in detail.

 The roles of each response team member and their contact information should be

included as well.

 This task is essential in order to response quickly against any security incident.

 The response plan is not a static document. It progresses according to modifications of

the system or the appearance of new threats that were not taken into consideration.

28

Deployment I

Secure Software Development Life Cycle

 Final security revision:

 Before the launch, it should be verified that all the security tasks planned to perform

the S-SDLC have been completed.

 Furthermore, it is advisable to carry out a revision of each task in order to ensure that

no failures have been committed during the performance.

 Certification:

 It allows users to ensure that the product comply with certain security

regulations/standards.

 Storage:

 It implies saving a copy of all the elements involved in the software version that is

going to be launched.

 It will be one of the elements to be considered in case of security incident.

 Tasks such as dynamic analysis, fuzzing and other security revisions are still executed

during this stage.

29

Deployment II

Secure Software Development Life Cycle

 This stage is only activated in response to events that have been declared as generators of

an incident in the incident response plan.

 Once activated, the guidelines established by the plan should be followed, including:

 Staff to notify and order of notification.

 Data capture for the later analysis of the incident.

 Execution of tasks for the mitigation of the threat.

 Execution of tasks for the re-establishment of the service (if needed).

30

Response

Secure Software Development Life Cycle

S-SDLC on Agile Development

Environments

 Agile methodologies are an alternative process to traditional methodologies that

are based on the development through smaller iterations used to include

functionality (http://agilemethodology.org).

 Tasks and activities normally established by the S-SDLC assume the traditional

life cycle (waterfall) during the software development.

 Generally, systems and products for mobile environments are developed via

agile methodologies.

 The execution of S-SDLC, as we have studied, requires adaptations to be

applied on agile methodologies.

 In such cases, the S-SDLC activities are executed with three different

frequencies:

 By sprint: activities that should be executed for each completed release.

 By bucket: activities that should be executed for each set of sprints.

 By project: activities that are executed only once during the whole project.

32

S-SDLC on Agile Development Environments

http://agilemethodology.org/

 Activities by sprint:

 Threat modelling of the functionality included on the sprint.

 All the activities related to the S-SDLC implementation stage.

 Final security review by sprint.

 Certification and storage.

 Activities by bucket:

 Definition of the security metrics that will be used to assess the bucket.

 Dynamic analysis, fuzzing and review of the attack surface tasks.

 Activities by project:

 Define the security requirements.

 Risk analysis.

 Define the attack surface.

 Create an incident response plan.

33

S-SDLC on Agile Development Environments

Good Practices in Secure

Development

 In the previous section, the different stages and activities involved in an S-SDCL

were reviewed.

 In this section, a series of general guides and practices for the secure encryption

of applications will be studied.

 Such guides are independent from the programming language and the target

platform.

 In the case of mobile applications, they should be used where applicable,

whether in the back-end or the end-point (mobile application).

 Its objective is to provide the developer a set of practices in order to implement

software in a secure way without needing to know concepts related to

vulnerabilities security and exploitation in depth.

 Following secure encryption good practices is not enough to ensure that an S-

SDLC is being performed; it is only a part of the whole process.

35

Introduction

Good Practices in Secure Development

 The following set of practices will be

covered within this section:

 Input validation.

 Output elements encryption.

 Password authentication and

management.

 Session management.

 Access control.

 Error management.

 Data protection.

 Security in communications.

 System configuration.

 Security in databases.

 Memory management.

 Other general considerations.

 https://www.youtube.com/watch?v=CIT1VJ

qJXO0. 36

Good Practices in Secure Development

List

https://www.youtube.com/watch?v=CIT1VJqJXO0

 All inputs to the system are considered as malicious: all input is evil:

 Text fields.

 URL.

 Cookies and other HTTP fields.

 Input data validation should always be performed in a reliable system, generally,

in the back-end. The mobile device is not considered a reliable element.

 All data validation should focus on a specific part of the application.

 Before carrying out the validation of data, it is advisable to unify the encryption of

data for all the verifications to be performed with the same encryption.

37

Input Validation I

Good Practices in Secure Development

 It is recommended:

 To validate data ranges and length.

 To use white lists to verify that all the elements of an input are valid.

 Check that all the received data correspond to what is expected:

□ HTTP headers should include only ASCII characters.

□ If an image is expected to be received in a specific format, verify that it is correct.

□ URL text and parameters fields should include the type of data expected in the application.

 In case that there are characters or strings that could be considered as

dangerous < > ../ ..\ % \ () “ ‘ \’ \” specific additional controls should be added for

calls that may include them.

 In the case of interpretable inputs (such as HTML code), avoid redirects that may

render controls ineffective.

38

Input Validation II

Good Practices in Secure Development

 Just like input validation, the output data encryption should be performed in a

reliable system such as the application’s back-end.

 Reinventing the wheel should be avoided. Multiple libraries and methods for

output encryption that have been widely tested and accepted by the community

are available:

 The following NSString class method can be used on iOS:

stringByAddingPercentEncodingWithAllowedCharacters.

 On Android, URLEncoder or DatabaseUtils are available.

 Output data should be encrypted according to the way they are going to be used

in the application:

 In case the output is going to be interpreted by a web browser, avoid the creation of

interpretable elements in HTML CSS, Javascript, etc.

 If the output is going to be interpreted by other system, avoid the possible creation or

modification of commands to them (SQL, XML, LDAP, etc.).

39

Output Elements Encryption

Good Practices in Secure Development

http://developer.android.com/reference/java/net/URLEncoder.html
http://developer.android.com/reference/android/database/DatabaseUtils.htmlsqlEscapeString(java.lang.String)

 All the pages, except for those strictly defined as public, should require the

authentication of users.

 The following recommendations should be followed for the implementation of

authentication controls:

 Authentication controls should always be performed on a reliable system (back-end).

 All the authentication controls should be centralised on a unique module, including

libraries able to perform calls to external authentication services.

 The authentication logic should not be connected to the accessed resource’s logic.

 Authentication requests should always be performed via properly encrypted (SSL)

HTTP POST connections.

40

Password Authentication and Management I

Good Practices in Secure Development

 The following practices are

recommended for the authentication

process:

 The validation of authentication data

should only be performed if all the

necessary information has been

introduced (user and password).

 In case there is an authentication

failure, no details (either visual nor in

the source code used) regarding the

specific authentication failure (incorrect

password, incorrect user, etc.) should

be provided.

 The authentication process should fail

in a secure way.

 Regardless the access method, the

password field should not display the

elements typed.

41

Good Practices in Secure Development

Password Authentication and Management II

 Under no circumstances should passwords be stored in the non-encrypted

application.

 All passwords should be stored summarised by using a secure cryptographic

function, using a salt in order to complicate brute-force attacks via rainbow

tables.

 The application should obligate users to use passwords with a minimum level of

complexity:

 Minimum length of 8 characters, but longer passwords are recommended.

 Alphanumeric characters, punctuation marks and numbers.

 If the application creates passwords by default, oblige the user to change it

during the first access.

 If various failed access attempts occur, deactivate access for a period of time,

long enough to avoid brute-force attacks, but not as long as to cause a denial of

service.

42

Password Authentication and Management III

Good Practices in Secure Development

http://www.securitybydefault.com/2013/09/consejos-practicos-la-hora-de-integrar.html

 Regarding the reset of passwords:

 When possible, the use of security questions should be avoided. In case they are

necessary, questions with a predictable or common answer should be avoided:

□ Incorrect example: What is the name of your first pet?

□ Correct example: Name of the street your mother lived in.

 The email to which the reset request is sent should be verified to be registered in the

system.

 In case any critical operation is going to be performed in the system, such as the

change of password itself, the user should be asked to authenticate again.

 If possible, implement a double authentication factor via:

 Password + mobile application that creates passwords that can only be used once

(Google authenticator).

 Password + biometric element.

43

Password Authentication and Management IV

Good Practices in Secure Development

https://github.com/google/google-authenticator

 If the session control included in the framework server on which the application is developed

provides sufficient guarantees, it is advisable to use it.

 iOS

 Android

 Java EE

 .Net

 Django

 Ruby on Rails

 Identifiers should be created by a reliable system (generally, the back-end), with libraries that

ensure that they are random enough.

 Every re-authentication should create a new session identifier and remove the old file.

 The user should be able to logout easily.

 Sessions should expire after a minimum period of inactivity.

 The exposition of information regarding sessions or cookies to third parties (logs record, use of

GET parameters, etc.) should be avoided.

 According to budget constraints, a system that enables the control and logout of active sessions

should be provided to the user.

44

Session Management

Good Practices in Secure Development

https://github.com/AFNetworking/AFNetworking
https://developers.google.com/android/reference/com/google/android/gms/fitness/data/Session
https://docs.oracle.com/javaee/7/api/javax/servlet/http/HttpSession.html
https://msdn.microsoft.com/en-us/library/75x4ha6s(v=vs.100).aspx
https://docs.djangoproject.com/en/1.9/topics/http/sessions/
http://guides.rubyonrails.org/security.html

 Access control decisions should be taken

according to information coming from

reliable systems.

 As in the case of input, output, and

authentication validation, it is advisable that

the access control system is centralised and

separated from the rest of logic, in a unique

element of the system.

 The access control should be performed for

all the requests, including those carried out

via technologies such as AJAX.

 Unauthorised users should not be allowed

to access elements such as:

 Application and services data.

 URLs only accessible by authorised users,

including images.

45

Good Practices in Secure Development

Access Control

 When an error occurs, it should be avoided to disclose sensitive information such

as system details, sessions identifiers or accounts information.

 The application should manage all the errors and never depend on system errors

by default.

 When an error occurs, the policy used by default regarding the task performed

should be the denial.

 Logs should register relevant events of the system:

 Failures on input validation.

 Failed authentication attempts.

 Connection attempts with expired sessions.

 Changes in the configuration of critical elements.

 Exceptions in the system and other errors occurred during the execution.

46

Error Management

Good Practices in Secure Development

 Passwords, authentication tokens

and other sensitive information

should be stored encrypted.

 The storage of credentials within

configuration files or the application’s

source code itself should be strictly

avoided. If open repositories such as

GitHub are used, access credentials

to services could be published.

 Configure the applications server for

files of the back-end application’s

source code not to be downloaded.

 Remove documentation and

configuration files that are installed

by default.

47

Good Practices in Secure Development

Data Protection

 Since most connections include

authentication tokens, sessions or

sensitive information in order to access

services of the application, connections

between clients and the server should

be encrypted.

 Applications should verify the validity

of the certificate provided and even

use certificate pinning techniques to

mitigate attacks to the PKI system.

 Resources accessible via secure

connections should not be available

through insecure connections

(downgrade to non-encrypted

connections).

 The implementation of such

technologies on mobile applications will

be reviewed more in depth in the

following section.
48

Good Practices in Secure Development

Security in Communications

 Ensure that the versions of the third parties’ elements required for the execution

of the application are the ones approved during the design.

 It is also necessary to check that no vulnerabilities that may affect the approved

versions have been registered. In such case, they should be reviewed and

chosen again.

 The system in process of production should not include the source code and

resources files that have been used to perform tests and verifications during the

development process.

 In case part of the application is provided by a web server, use the “robots.txt”

corresponding file to avoid indexing. It is important to keep this aspect in mind

since it may cause the providing of extra information to the attacker.

 It is advisable to use a system for versions control during the development of the

software.

49

System Configuration

Good Practices in Secure Development

 The access to the database should be made via parametrised queries,

regardless the database type.

 Parameters used and results obtained in queries should go through their

corresponding encryption and validation processes (escaping and filtering).

 Applications and systems should use as least privileges as possible to access

databases’ tables.

 Roles with different access levels should access by using different users to

ensure the separation of privileges.

 The connection to the database should be maintained only as long as it is strictly

necessary to complete the requests needed.

 As in the case of the rest of subsystems (applications server, etc.), all the

unnecessary files and installation configuration created by default should be

removed.

50

Security in Databases

Good Practices in Secure Development

 Some programming languages are responsible for the management of memory

through their execution environments (Java, Javascript, Python, Swift, etc.) in an

automatic way. However, others such as C (that can be used for the

development of mobile applications on Android or iOS) have a manual memory

management system.

 In such cases, it is essential to carry out a good memory management. Most

critical vulnerabilities are caused due to memory management issues (buffer

overflow).

 The most critical aspects regarding memory management are related to:

 Buffer copies between memory addresses.

 Space reserved in memory for indefinite-length variables.

 Freed up memory that had previously been freed up.

51

Memory Management I

Good Practices in Secure Development

 It is advisable to follow a series of guidelines that limit the arising of memory

management issues as much as possible:

 When using functions that accept the amount of bytes to copy (such as strncpy),

users should take into consideration the fact that the target buffer may not end in zero

(not all the source bytes are copied).

 When creating copies between buffers, users should verify that sizes are correct and

there is not possibility of writing when the space reserved for each buffer is exceeded

(end-of-copy condition well defined).

 Maximum sizes should be defined for all the buffers used.

 When a variable that we reserved memory space for is not needed anymore, the

resource should be released or closed. Users should not rely on the garbage collector

function.

 If possible, users should avoid the use of dangerous functions such as strcat,

strcpy, etc.

52

Memory Management II

Good Practices in Secure Development

 Regardless the element to program, if there already is a tested and verified code

that performs such operation, using it would always be the best option.

 When a task related to the operative system has to be performed, it should be

executed through the API provided by it. Under no circumstances should

commands be sent to the operative system through the console directly.

 Whenever a code that has not been included in the initial deployment of the

application (dynamic execution) is going to be executed, its integrity should be

verified.

 Synchronisation mechanisms existing should be used in the operative system in

order to avoid the appearance of race conditions.

 All the variables and sources of data should be initialized before first use.

53

Other General Considerations I

Good Practices in Secure Development

 The numerical representation of the programming language should be taken into

consideration in order to avoid errors when carrying out calculations.

 Specifically, the following aspects should be taken into account: accuracy of

operations, types of signed/unsigned data, conversions, castings, and the way that the

programming language handles numbers over and under the limits of representation.

 If the application will implement automatic updating mechanisms, it should be

verified that the code received during such updating comes from a reliable

source.

 Code signing mechanisms can be used to this aim, as the ones used in mobile

applications shops/markets Once the code has been downloaded and before the

update, its signature should be verified.

54

Other General Considerations II

Good Practices in Secure Development

Good Practices in Mobile

Development

 Mobile applications share characteristics with web applications (many users, fast

development, continuous network connectivity), as well as with desktop systems

(shared data storage, malware, existence of vulnerable applications such as the

browser) in a mobility environment.

 The attack surface on a mobile device is a combination of elements that affect

both types of applications.

56

Introduction

Good Practices in Mobile Development

Attack vectors
of the mobile
environment

Device

Browser System Applications Malware

Back-end

Web
application

Database

Network

 During the rest of the section, the

security aspects that should be taken

into consideration when developing of

applications, in order to mitigate

threats created by attack vectors of

the mobile environment will be

studied:

 Protection of the application’s code.

 Sensitive data management.

 Logs and sensitive data leakage.

 Sensitive data management.

 HTML components in mobile

applications.

 Communication between applications.

 Authentication in mobile applications.

57

Good Practices in Mobile Development

Specific Aspects

Application Protection

 As it was verified in unit 3, reverse engineering techniques may provide quite

useful and valuable information on the functioning of applications.

 Increasing the complexity of the code by using obfuscation techniques will make

it difficult for the attacker to identify vulnerabilities and failures that have been

unnoticed during the revision processes.

 ProGuard

 DexProtector

 In order to make reverse engineering tasks difficult, the following techniques may

be used:

 Restriction of the use of debuggers.

 Traces detection.

 Debugger optimisation.

 Destruction of information on binary symbols.

59

Code Obfuscation

Application Protection

http://proguard.sourceforge.net/
https://dexprotector.com/

 Through the operative system, applications

may restrict the use of debuggers in order

to inspect their execution.

 Even though such techniques can be

avoided using repackaging techniques, it

requires an extra effort from the attacker.

 On Android, it can be specified with the

android:debuggable=”false” attribute in

the application tag within the manifest.

 On iOS, the following call may be

introduced at the beginning in the

execution of the application for it to close in

case a debugger is attempted to be added:

 ptrace(PT_DENY_ATTACH, 0, 0, 0);

60

Application Protection

Restriction of the use of debuggers

 Since repackaging techniques can be used to debug the application, it is

advisable to add controls in order to verify if it is being debugged.

 If the application is detected to be connected to a debugger, there are different

possibilities:

 Notify the back-end.

 Remove sensitive data from the application.

 It can be identified on Android with the following line:

boolean depuracion= (0 != (getApplicationInfo().flags &

ApplicationInfo.FLAG_DEBUGGABLE));

 On iOS, the following code provided by Apple can be implemented:

https://developer.apple.com/library/ios/qa/qa1361/_index.html

61

Detection of Traces

Application Protection

https://developer.apple.com/library/ios/qa/qa1361/_index.html

 Debugger optimisations modify the code for it to be faster when executing on the

processor; however, they also make its reading and understanding more difficult.

 On Android, two options are possible:

 A part of the application can be programmed in C in order to use it as native libraries.

 ProGuard removes the code that is not used in the application and modifies the name

of methods, variables, classes and packets in order to complicate their reading.

ProGuard documentation is available at:

http://developer.android.com/tools/help/proguard.html

 Some tools similar to ProGuard can be used on iOS:

 iOS Class Guard: https://github.com/Polidea/ios-class-guard

 LLVM obfuscator: https://github.com/obfuscator-llvm/obfuscator

62

Debugger Optimisation

Application Protection

http://developer.android.com/tools/help/proguard.html
https://github.com/Polidea/ios-class-guard
https://github.com/obfuscator-llvm/obfuscator

 The destruction of binary symbols (or binary stripping) eliminates the binary

symbols table.

 This table is a structure of data created by the compiler in order to identify the

names of variables and methods used in the binary. Its elimination complicates

the read and understanding of the code during its static analysis and debugging.

 On Android, it is possible to:

 Use an executable file compressor such as UPX (http://upx.sourceforge.net).

 Use console utilities such as sstrip.

 On iOS, it is possible to configure the project on the Build Settings tab and

section Deployment.

63

Destruction of Binary Symbols

Protection of the Application

http://upx.sourceforge.net)/

 Besides reverse engineering attacks, the repackaging can be used for malicious code

injection.

 The application is able to verify the integrity of its components via summaries or digital

signatures of its components.

 If a modification of the application is detected, the user can notify the back-end or remove

the application’s sensitive data.

 On Android, the PackageManager allows users to access the information of the current

signature of the application.

 PackageInfo packageInfo =

context.getPackageManager().getPackageInfo(context.getPackageName(),

PackageManager.GET_SIGNATURES);

 packageInfo.signatures

 On iOS, it is possible to verify the validity of the purchase receipt of the application

provided by the system.

 https://developer.apple.com/library/mac/releasenotes/General/ValidateAppStoreReceipt/Introductio

n.html

 Such verifications can be removed via repackaging techniques.

64

Application Integrity

Application Protection

https://developer.apple.com/library/mac/releasenotes/General/ValidateAppStoreReceipt/Introduction.html

 Devices jailbreak or rooting remove many of the security measures of the system for apps

protection such as sandboxing.

 The detection can be made by executing some of the tasks that can only be executed under

these conditions or by locating files installed during the project.

 On Android, users may try to locate the supersu application or busybox tools:

 The supersu application has a packet name eu.chainfire.supersu

 Executing a command via Process su =

Runtime.getRuntime().exec(”command");

 On iOS, users may try to locate any of the applications installed on jailbroken devices.

 Such types of techniques can be avoided by modifying the location or files names, or through

the repackaging of the application.

65

Jailbreak and rooting detection

Application Protection

Sensitive Data Management

 Mobile applications handle sensitive data of different types during their

execution.

 The different possible states of a device’s data are as follow:

 Data at rest: data located in the persistent storage of the device such as memory

cards or files internal system.

 Data in transit: data sent and received from the back-end and other mobile devices.

 Data in memory: data on which operations are being executed and, therefore, are

stored in the device’s memory.

 In order to ensure the proper management of data during all their life cycle, users

should follow a series of guidelines to handle them in each of the possible states.

67

Sensitive Data of an Application

Sensitive Data Management

 Data considered as sensitive require a specific protection when they are at rest

on the device.

 The use of encrypted file systems limits access to the device if it is turned off for

an external attacker; however, it does not prevent other applications or

processes of the device from performing data readings through the file system (if

the corresponding permissions allow it).

 In order to prevent access by third parties, users should avoid the use of external

storage systems (SD cards, etc.) to store sensitive information.

 On Android, the use of the attribute android:installLocation (that allows

users to use external storage to install the application) should be avoided.

68

Secure Data Storage I

Sensitive Data Management

 Furthermore, for data stored in the internal memory, it is advisable to implement

an additional encryption layer.

 Android does not include specific libraries for the encryption of files at rest

(except for certificates and keys). There are two options to implement such type

of encryption:

 Create from scratch using the standard encryption libraries existing in the Java API.

 Use a library for the secure storage of data such as sqlcipher (http://sqlcipher.net).

 Two APIs can be used for the storage of keys:

 KeyChain API used to store credentials that will be used through the whole the system

(e.g.: root certificate of a CA).

 Keystore used to store keys that will be used by the application. From Android 6.0, it is

possible to store symmetric encryption keys.

69

Secure Data Storage - Android

Sensitive Data Management

http://sqlcipher.net/
http://developer.android.com/reference/android/security/KeyChain.html
http://developer.android.com/training/articles/keystore.html

 Keys created via Keystore include two

security measures:

 No application has direct access to keys. The

KeyStore API is responsible for all the

operations.

 In the case of devices that have a secure

execution environment or a “secure element”

(SE), the key is stored inside the SE itself. In

this case, applications request the SE to

perform the cryptographic operations.

Applications will only be able to use the SE

for such cryptographic options compatible

with the SE (encryption algorithms, signature,

verification, etc.).

 Furthermore, each key stored in the KeyStore

may be configured in a way that can only be

used if the user has unlocked the phone via

pattern, PIN, password or biometric element

(from Android 6.0).

70

Sensitive Data Management

Secure Data Storage - KeyStore

 On iOS, data can be encrypted with an additional encryption layer by using the

Data Protection API.

 Every time a file is created via NSFileManager on iOS, four different protection

classes can be specified:

 NSFileProtectionComplete: the file will be encrypted with a key derived from the

lock code. The key is only accessible with the device unlocked and is discarded 10

seconds after the lock.

 NSFileProtectionCompleteUnlessOpen: the same protection as in the previous

case, but, in case the file is open when the device is locked, the key is not discarded

until the file is closed.

 NSFileProtectionCompleteUntilFirstUserAuthentication: the encryption

key is obtained after the first authentication and is not forgotten until the device is

turned off.

 NSFileProtectionNone: it does not provide any additional protection.

71

Secure Data Storage - iOS

Sensitive Data Management

 Furthermore, iOS provides the Keychain, an encryption container (that also has a

key derived from the lock code) for credential storage by applications.

 Elements added to the Keychain include a series of attributes that specify its type

(user, password, certificate, etc.), type of authentication they can be used for and

conditions to access them.

 In addition to conditions described for files, some new ones are added:

 kSecAttrAccessibleAfterFirstUnlockThisDeviceOnly

 kSecAttrAccessibleWhenPasscodeSetThisDeviceOnly

 kSecAttrAccessibleAlwaysThisDeviceOnly

 kSecAttrAccessibleWhenUnlockedThisDeviceOnly

 Aimed at avoiding the replication of elements introduced into other devices that

share the same iCloud account (and have the Keychain activated on the cloud).

72

Secure Data Storage - iOS

Sensitive Data Management

 All the connections that include any kind of sensitive information should be

performed via SSL connections that have been completely validated.

 To this end, it is necessary to verify a series of properties of the certificate during

the establishment of the connection.

 The certificate should have been signed by a valid certificate authority. Authorities that

are included in the list of valid authorities of the device can be considered as valid

authorities; furthermore, the application itself may establish a valid authority for its

connections by including the corresponding CA certificate.

 The certificate should not have expired or be in a black list of certificates.

□ Android has a black list of insecure certificates that can be updated remotely.

□ On iOS this list is maintained up to date with the operative system’s updates.

 The name of the certificate’s server should be the same as the requested one.

Security in Data Transport – SSL

Sensitive Data Management

 The pinning certificate is a technique that takes advantage of a mobile

application generally connecting to a limited number of servers.

 Apart from the previous verifications, the application will check that the certificate

provided by the server corresponds to a certificate already known by the

application.

 The certificate authorities committed do not affect the application’s security. If

pinning is implemented, the signature of a reliable CA is not required.

 The pinning can be deactivated via repackaging or if the device has been rooted

or jailbroken.

Security in Data Transport – Pinning

Sensitive Data Management

CA
Date Host Pinning

Verifications

Malicious
certificate
signed by a
valid CA

Valid
certificate

Valid
certificate

 Android allows the implementation of Certificate Pinning by defining a specific
TrustManager.

 To this end, it is necessary to include the CA certificate among the resources of

the application.

Security in Data Transport – Pinning

Sensitive Data Management

// A KeyStore that includes the certificate of our CA is created
Certificate ca = //the certificate of a file is read
keyStoreType = KeyStore.getDefaultType();

KeyStore keyStore = KeyStore.getInstance(keyStoreType);

keyStore.load(null, null);

keyStore.setCertificateEntry("ca", ca);

// A TrustManager that relies only on our CA is created
String tmfAlgorithm = TrustManagerFactory.getDefaultAlgorithm();

TrustManagerFactory tmf = TrustManagerFactory.getInstance(tmfAlgorithm);

tmf.init(keyStore);

// A context that includes our TrustManager is created (and it will be used to create the
HttpsURLConnection).
Context context = SSLContext.getInstance("TLS");

context.init(null, tmf.getTrustManagers(), null

 On iOS, the pinning is performed via the NSURLConnection delegate that

includes the method: willSendRequestForAuthenticationChallenge.

 It may also be implemented through the TrustKit library.

Security in Data Transport – Pinning on iOS

Sensitive Data Management

…

SecTrustRef serverTrust = challenge.protectionSpace.serverTrust;

SecCertificateRef certificate = SecTrustGetCertificateAtIndex(serverTrust, 0);

NSData *remoteCertificateData = CFBridgingRelease(SecCertificateCopyData(certificate));

NSData *localCertData = [NSData dataWithContentsOfFile:[[NSBundle mainBundle]

pathForResource:@”file_name" ofType:@"cer"]];

if ([remoteCertificateData isEqualToData:localCertData]) {

NSURLCredential *credential = [NSURLCredential credentialForTrust:serverTrust];

[[challenge sender] useCredential:credential forAuthenticationChallenge:challenge];

}else {

// ERROR MESSAGE

[[challenge sender] cancelAuthenticationChallenge:challenge];

}

https://datatheorem.github.io/TrustKit/

 When the content of a variable that

includes sensitive information (keys,

authentication tokens, cookies, etc.) is

not necessary anymore, it should be

removed from the memory.

 It is advisable that such kind of values

are stored in bytes arrays instead of in

objects such as strings.

 The reallocation of an object (as, for

example, a string) generally reserves

a new space in memory for the new

reference, but it does not remove the

old one until the garbage collector

passes.

 The use of a byte array allows users

to overwrite the content of the variable

at any time.

77

Sensitive Data Management

Variables in Memory

 Whenever it is possible, avoid the storage of sensitive data in caches, including:

 Cookies.

 Files.

 SQLite databases.

 Websites cache.

 On iOS, it is possible to limit websites cache by returning null in the

willCacheResponse method of the NSURLConnection delegate.

 On Android, it is possible to deactivate HTTP connections cache by using the
setUseCaches method of URLConnection objects.

78

Caches

Sensitive Data Management

URLConnection connection = miURL.openConnection();

connection.setUseCaches(false);

- (NSCachedURLResponse *)connection:(NSURLConnection *)connection

willCacheResponse:(NSCachedURLResponse *)cachedResponse {

return nil;

}

Logs and Sensitive Data Leakage

 Every time it is possible, it is advisable to remove the maximum amount of logs

created by the application in the device.

 On Android, it is possible to configure ProGuard in order to remove logs by

adding proguard.cfg to its configuration file.

 On iOS it is possible to use a macro that removes the log sentence in

development versions in production process.

80

Removal of Logs

Logs and Sensitive Data Leakage

-assumenosideeffects class android.util.Log {

> public static *** d(...);

> public static *** v(...);

> public static *** i(...);

> public static *** e(...);

}

#define NSLog(s,...)

 Users should avoid the operative system to store sensitive data typed by the

user in the keyboard cache.

 Specific password fields should be used for passwords. Information typed on

such fields is not stored in the device’s cache.

 For the rest of fields that may store sensitive data, the option to store data typed

in the cache should be deactivated.

 On Android, the only consistent way of performing such operation for it to work

on all devices, is to define the field as a password field with visible text. It can be

made by using the text field attribute
android:inputType=”textVisiblePassword”.

 On iOS, it may be performed by configuring the UITextField
autocorrectionType property with the following value:

UITextAutocorrectionTypeNo.

81

Keyboard Cache

Logs and Sensitive Data Leakage

 The information stored in the system’s clipboard may be accessed by other

applications without needing any special permission.

 On Android, it is necessary to create a subclass of the EditText class and re-
implement isSuggestionsEnabled and canPaste methods for them to return

false.

 There are two possibilities on iOS:

 By creating a subclass of UITextField that does not allow copy or cut actions.

 When copy and cut functions are executed, the pasteboardWithUniqueName

method is called in order to obtain the specific clipboard of the application.

82

Clipboard

Logs and Sensitive Data Leakage

-(BOOL)canPerformAction:(SEL)action withSender:(id)sender {

if (action == @selector(copy:) || action == @selector(cut:)) {

return NO;

}

[super canPerformAction:action withSender:sender];

}

HTML Components in Mobile

Applications

 All mobile operative systems allow applications to display HTML content through

web views.

 The use of such views implies certain security risks that should be taken into

account when using them.

 In order to reduce the attack surface created by such views and, regardless the

platform used, it is recommended:

 Not to load remote content via unencrypted connections (without SSL).

 To make sure that an SSL encryption secure connection is used and the SSL

certificate provided by the server is completely validated.

 To forbid the access to the system to device files from the web view.

 To deactivate Javascript and any other plug-in when possible.

 To verify that the web view only loads URLs of the required domains.

 Not to expose native methods through Javascript.

 Not to allow the load of URL via communication mechanisms with other applications.

84

Introduction

HTML Components in Mobile Applications

 Deactivate Javascript.

 Deactivate access to the file system.

 Verify URLs loaded on the web view (WebView extension).

85

How to Secure Android Components

HTML Components in Mobile Applications

WebView webview = new WebView(this);

webview.getSettings().setJavaScriptEnabled(false);

WebView webview = new WebView(this);

webview.getSettings().setAllowFileAccess(false);

private class MiWebViewClient extends WebViewClient {

@Override

public boolean shouldOverrideUrlLoading(WebView view, String url) {

//VERIFICATIONS OF THE INITIAL URL

}

@Override

public WebResourceResponse shouldInterceptRequest(final WebView view, String url){

//VERIFICATION OF ALL THE REQUESTS

}

}

 In order to avoid the load of URL from external elements of the application, it is

necessary to remove from the manifest all the exported attributes of activities

defined on the application that have a web view as main view.

 Data of the web view cache should be removed once it has stopped being used
(onPause()method of the activity).

 Finally, users should avoid exposing the visible native code by using the
addJavaScriptInterface()method.

86

How to Secure Android Components

HTML Components in Mobile Applications

@Override

protected void onPause() {

...

webview.clearCache();

...

super.onPause();

}

 From iOS 9, there are three types of web views.

 UIWebView whose use is not recommended from iOS8, but may be used on

applications.

 It uses a non-optimised rendering motor, therefore, web pages load more slowly.

 It only allows configuration through the delegate methods and, among them, the
only relevant one is webViewshouldStartLoadWithRequest, which enables

the identification of the URL that the web view will connect to.

 Web view of such kind do not allow the deactivation of the Javascript motor.

87

iOS - UIWebView

HTML Components in Mobile Applications

- (BOOL)webView:(UIWebView*)webView shouldStartLoadWithRequest:(NSURLRequest*)request

navigationType:(UIWebViewNavigationType)navigationType {

NSURL *url = request.URL;

//VERIFICATIONS

return ...;

}

https://developer.apple.com/library/ios/documentation/UIKit/Reference/UIWebView_Class/
https://developer.apple.com/library/ios/documentation/UIKit/Reference/UIWebViewDelegate_Protocol/index.html#//apple_ref/occ/intfm/UIWebViewDelegate/webView:shouldStartLoadWithRequest:navigationType:

 WKWebView is the web view used from iOS 8 by default.

 During its initialisation, a series of parameters can be defined via an object such
as WKWebViewConfiguration.

 For example, the following code can be used to deactivate Javascript on the

view:

 It allows users to perform the certificate pinning through the delegate as it was

explained in the Sensitive Data Protection section.

 There is an error on the delegate of iOS 8, therefore, pinning should be carried out
reviewing the certificates included in the certificateChain property.

88

iOS - WKWebView

HTML Components in Mobile Applications

WKWebViewConfiguration *conf = [[WKWebViewConfiguration alloc]init];

conf.preferences. javaScriptEnabled = NO

WKWebView *webView = [[WKWebView alloc] initWithFrame:self.view.frame

configuration:conf];

https://developer.apple.com/library/ios/documentation/WebKit/Reference/WKWebView_Ref/index.html#//apple_ref/occ/cl/WKWebView
https://developer.apple.com/library/ios/documentation/WebKit/Reference/WKWebViewConfiguration_Ref/index.html#//apple_ref/occ/cl/WKWebViewConfiguration

 SafariViewController provides a

specific controller that enables web

navigation from inside the application.

 Such controller is executed on a

different process from the application

that invokes it.

 The user may access all Safari’s

functionalities, including password

auto-complete function, button to

execute actions and address bar in

read mode.

 The application cannot access places

navigated from the view or data

introduced into it by the user.

 If the application wants a greater

control on the content displayed, it
should use the WKWebView view.

89

HTML Components in Mobile Applications

iOS - SafariViewController

https://developer.apple.com/library/prerelease/ios/documentation/SafariServices/Reference/SFSafariViewController_Ref/index.html

Communication Between

Applications

 The communication between applications on Android is an additional attack

vector that should be controlled.

 First of all, all the application elements that are not specifically used to

communicate with other applications should be marked in the manifest with the
following property: android:exported=false.

91

Communication Between Applications on Android

Communication Between Applications

<activity android:name=”.MyActivity” android:label=”Etiqueta”

android:exported=false >

<intent -filter>

<action android:name=”accion.intent"></action>

</intent>

</activity>

<service android:enabled="true" android:name=".MyService”

android:exported=false ></service>

<receiver android:enabled="true” android:exported=false

android:label="My Broadcast Receiver"

android:name=".MyBroadcastReceiver"

</receiver>

 Users should avoid sending sensitive information via BroadcastIntents since

malicious activities could define the same filter with a bigger priority to capture

sensitive information.

 All the information received from an intent should be validated as any other input.

 If the activity is nor public, the user should avoid defining IntentFilters.

Therefore, the only way to access them is through the name of the component.

92

Intents

Communication Between Applications

//INTENT WITH SENSITIVE INFORMATION: IF IT IS CAPTURED, DATA ARE COMPROMISED

public static Intent crearIntent(Context context, Usuario user) {

Intent i = new Intent(context, DetallesUsuario.class);

i.putExtra(EXTRA_USUSARIO, user);

return i;

}

//INTENT THAT ONLY SENDS THE USER’S ID

public static Intent crearIntent(Context context, String userId) {

Intent i = new Intent(context, DetallesUsuario.class);

i.putExtra(EXTRA_USER_ID, userId);

return i;

}

 ContentProviders provide the application data to third parties’ applications.

 ContentProviders may require permissions to read (readPermission), write

(writePermission), or both actions (permission) to other applications

through the provider in the application’s database.

 Permissions defined within the provider should have been previously declared in
the application via elements such as <permission>.

 A provider should validate all the requests received to avoid SQL code injection

to access to unauthorised files.

 It is performed via the android:grantUriPermissions=“true” attribute. An

application may also provide occasional access to ContentProvider elements to

applications that request it, even if they have not defined any specific permission.

93

Content Providers

Communication Between Applications

<provider android:name=”MiProvider"

android:authorities="com.miapp.provider.MisDatos”

android:readPermission=”permiso.de.lectura"

android:writePermission=”permise.de.escritura”

android:permission=”permiso.para.ambos">

</provider>

http://developer.android.com/guide/topics/manifest/permission-element.html
http://developer.android.com/guide/topics/manifest/grant-uri-permission-element.html

 Services may also expose functionalities or sensitive information to third parties’

applications that should be properly protected.

 A service may validate permissions of an application, method by method, in order

to access a specific functionality through the method checkPermission() of the

PackageManager.

 It is also possible to define the permissions required to communicate with the

service through the application’s manifest.

94

Services

Communication Between Applications

<permission android:name="com.mipermiso" android:label="mi_permiso"

android:protectionLevel="dangerous"></permission>`

<service android:name="com.MiServicio” android:permission="com.mipermiso">

<intent-filter>

<action android:name="com.MI_ACCION"/>

</intent-filter>

</service>

http://developer.android.com/reference/android/content/pm/PackageManager.htmlcheckPermission(java.lang.String,%20java.lang.String)

Authentication in Mobile

Applications

 OAuth is a standard for the access authorisation to resources/services through

the web.

 From the point of view of an end user, OAuth provides the following advantages:

 Use of only one account to access multiple services.

 Less passwords to remember.

 It is not necessary to share credentials (generally, user and password) with an

unreliable external service.

 It is possible to revoke provided authorisations easily.

 From the point of view of the developer, it provides the following advantages:

 The handling and the amount of sensitive information to store is simplified.

 Password management or renovation systems are not required.

 Its implementation is performed via widely tested libraries.

 There are multiple identity and other services providers that already use OAuth.

96

Introduction to OAuth

Authentication in Mobile Applications

97

With OAuth

Authentication in Mobile Applications

Credentials are only sent to the authorisation provider

SafariViewController

In CityMapper

98

With OAuth

Authentication in Mobile Applications

The user authorises the information to share and may modify it at any

moment through its provider.

SafariViewController

In CityMapper

99

Authentication before OAuth

Authentication in Mobile Applications

Welcome to FakeSocialNetwork.com

Please, use your Google account to login

For users to authorise or authenticate in a web, credentials of the

authorisation provider should be introduced in an unreliable web.

 Four different roles participate during

the execution of the OAuth protocol:

 Resource owner: an entity capable of

granting access to a specific resource. In

most cases of the mobile environment, it will

be the end user.

 Resource server: the server hosting the

client’s resource. It is able to provide access

to it if the proper credentials are used (access

tokens that will be described later).

 Client: the application that requests access

to the resource on behalf of the resource

owner. In the case of mobile applications, it

may be the application itself or its back-end.

 Authorisation server: server that

creates access tokens for the client when the

resource owner has been authenticated in the

resource server. The resource server and the

authorisation server roles are often executed

by the same entity.

100

Authentication in Mobile Applications

Roles

101

Scheme

Authentication in Mobile Applications

Client

Resource
owner (end

user)

Authorisation
server

Resource
server

A - Authorisation request

B - Authorisation

C - Authorisation

D - Access token

E - Access token

F - Protected resource

A1
Authentication

and
authorisation

D1

Access
token

102

Scheme on the Example of City Mapper

Authentication in Mobile Applications

Client
(City Mapper)

Resource
owner (end

user)

Authorisation
server

Resource
server

A - Authorisation request

B - Authorisation

C - Authorisation

D - Access token

E - Access token

F - Protected resource

D1

Access
token

A1

 A) The client requests the authorisation from the owner of the resource. The

authorisation may be solved locally (in the mobile device) if the resource

(account) is configured within the device itself (account management

frameworks). If the account is not configured, it can be obtained with the

authorisation server acting as intermediary (A1).

 B) The client receives the authorisation (a credential that means that the client

has access to that specific resource. OAuth 2.0 defines four different types of

authorisation:

 Authorisation code: obtained when stage A1 is executed.

 Implicit code: the client is issued the authentication token directly after A1. When

possible, it should be avoided due to security implications.

 Password: user and password credentials are used. It eliminates all the scheme’s

security; therefore, it should always be avoided.

 Client’s credentials: if the resource belongs to the client or access has been allowed, it

is only necessary to use the client’s credentials.

103

Description of the Scheme

Authentication in Mobile Applications

 C) The client is authenticated in the authorisation server by using credentials (it

is necessary to be registered) and the authorisation received during the previous

stage.

 D) The server validates the client’s credentials and authorisation. If they are

correct, it creates an access token:

 The authorisation and resource servers share the access token (in case they are not

the same entity) through an out-of-band channel.

 In addition to the resources that the access token enables access to, it may also

include the time during which access is allowed.

 E) The client requests the resource server access to the resource. To this end,

the client presents the access token obtained in the previous stage.

 F) The resource server validates the access token and, if the validation is

correct, it sends the requested resource.

104

Description of the Scheme

Authentication in Mobile Applications

 In the mobile environment, the authorisation and resource servers may be

accessed via three different mechanisms:

 APIs of the operative system accounts: the application that provides the resources

should have registered an account in the operative system itself. The client requests

the system accounts, and the system redirects the request to the specific

authentication/authorisation API of the account selected by the user.

 Applications: it is similar to the previous case, but the client requests the

authorisation directly to the resource/authorisation server through a specific application

already installed in the client. To this end, communication libraries between

applications are used.

 Web views: if the resource/authorisation server application is not installed on the

device, the web view can be used to carry out the process. Once the user has been

authorised, the client may extract the access token from the corresponding web view.

105

Authorisation in Mobile Operative Systems

Authentication in Mobile Applications

 Android’s AccountManager can be use to create authorisation requests to the

Google account installed in the device or to the accounts of other providers that

have implemented the required methods within their application.

 Permissions required to access the devices’ accounts.

 During the creation of the activity it is verified whether the user has already

provide authorisation.

106

Authorisation on Android – AccountManager I

Authentication in Mobile Applications

<uses-permission android:name="android.permission.GET_ACCOUNTS" />

<uses-permission android:name="android.permission.INTERNET" />

<uses-permission android:name="android.permission.USE_CREDENTIALS" />

protected void onCreate(Bundle savedInstanceState) {

super.onCreate(savedInstanceState);

AccountManager accountManager = AccountManager.get(this);

if (tokenGuardado() != null) {

accionesAutenticado(tokenGuardado());

} else {

escogerCuenta();

}

}

 If the client has not been authorised, the account that is going to be used to

access the resource should be requested (com.packet.account).

 The response will include the name of the account, therefore, we should obtain

the account and make the authentication token request for this resource.

107

Authorisation on Android – AccountManager II

Authentication in Mobile Applications

private void escogerCuenta() {

int ACCOUNT_REQUEST_CODE = 1601;

Intent intent = AccountManager.newChooseAccountIntent(null, null,

new String[] { ”com.paquete.cuenta" }, false, null, null, null, null);

startActivityForResult(intent, ACCOUNT_REQUEST_CODE);

}

protected void onActivityResult(int requestCode, int resultCode, Intent data) {

super.onActivityResult(requestCode, resultCode, data);

if (resultCode == RESULT_OK) {

if (requestCode == ACCOUNT_REQUEST_CODE) {

String accountName = data.getStringExtra(AccountManager.KEY_ACCOUNT_NAME);

for (Account account : accountManager.getAccountsByType(”com.paquete.cuenta")) {

if (account.name.equals(accountName)) {

userAccount = account;

break;

}

}//RESOURCE WILL DEPEND ON THE RESOURCE THAT IS GOING TO BE ACCESSED

//IT IS REQUIRED FO HANGOUT "https://www.googleapis.com/auth/googletalk";

accountManager.getAuthToken(userAccount, "oauth2:" + RECURSO, null, this,

new OnTokenAcquired(), null);

}}}

 Once the authorisation token has been obtained, a net object such as
OnTokenAcquired is called, which acts as callback for the reception of the

authentication token. The token should be stored as a sensitive data of the

application.

108

Authorisation on Android – AccountManager III

Authentication in Mobile Applications

private class OnTokenAcquired implements AccountManagerCallback<Bundle> {

@Override

public void run(AccountManagerFuture<Bundle> result) {

try {

Bundle bundle = result.getResult();

Intent launch = (Intent) bundle.get(AccountManager.KEY_INTENT);
if (launch != null) {

//FAILED AUTHORISATION, YOU SHOULD RETRY IT

startActivityForResult(launch, AUTHORIZATION_CODE);

} else {
String token = bundle.getString(AccountManager.KEY_AUTHTOKEN);

guardarToken(token)

accionesAutenticado(token);

}

} catch (Exception e) {

throw new RuntimeException(e);

}

}

}

 It is possible that the resource server accepts resources requests through their

application, but without being integrated with Android’s account system.

 In such cases, the service itself often provides exhaustive documentation on how

to use the application for the request of authentication tokens.

 The documentation generally includes the registration process of the client

application and how to make calls between both applications in order to request

and receive the authorisation token.

 Find some examples of such kind of authorisation:

 Facebook: https://developers.facebook.com/docs/facebook-login/android

 Twitter: through the following APIs:

□ Twitter Kit for Android https://github.com/twitter/twitter-kit-android

□ Twitter Core if Fabric is used https://docs.fabric.io/android/twitter/twitter-core.html

109

Authorisation on Android – Applications’ SDKs

Authentication in Mobile Applications

https://developers.facebook.com/docs/facebook-login/android
https://github.com/twitter/twitter-kit-android
https://docs.fabric.io/android/twitter/twitter-core.html

 If the application is not installed, a WebView (provided by the system) can be

used to access the information. The functioning of OAuth may differ from one

service to another.

110

Authorisation on Android - Browser

Authentication in Mobile Applications

@Override

public void onCreate(Bundle savedInstanceState) {

super.onCreate(savedInstanceState);

setContentView(R.layout.main);

String url = URL_DE_OAUTH + "?client_id=" + ID_NUESTRA_APP_EN_SERVICIO_OAUTH;

WebView webview = (WebView)findViewById(R.id.webview);

webview.getSettings().setJavaScriptEnabled(true);

webview.setWebViewClient(new WebViewClient() {

public void onPageStarted(WebView view, String url, Bitmap favicon) {

String accessTokenFragment = "access_token=";

String accessCodeFragment = "code=";

if (url.contains(accessTokenFragment)) {

// Capture the request to look for authorisation codes and the token

String accessToken = url.substring(url.indexOf(accessTokenFragment));

guardarToken(accessToken);

} else if(url.contains(accessCodeFragment)) {

// If it is an access code, make another request to obtain the token

String accessCode = url.substring(url.indexOf(accessCodeFragment));

guardarCodigoAutorizacion(accessCode);

String query = "client_id=" + ID_NUESTRA_APP_EN_SERVICIO_OAUTH + "&client_secret=" +

SECRETO_OBTENIDO_DURANTE_EL_REGISTRO_DE_NUESTRA_APP+ "&code=" + accessCode;

view.postUrl(OAUTH_ACCESS_TOKEN_URL, query.getBytes());

}}});

webview.loadUrl(url);

}

 iOS enables the configuration of Facebook and Twitter accounts in the device’s

settings, so that other applications may request access to them.

 In this case, iOS privacy preferences allow the user to revoke access tokens

directly.

 Find an example below to access the email account stored in the user’s

Facebook account.

111

Authorisation on iOS - Accounts Framework

Authentication in Mobile Applications

ACAccountStore *accountStore = [[ACAccountStore alloc] init];

ACAccountType *accountType = [accountStore

ccountTypeWithAccountTypeIdentifier:ACAccountTypeIdentifierFacebook];

NSDictionary *options = @{ ACFacebookAppIdKey : APPID_DEL_CLIENTE_EN_FACEBOOK,

ACFacebookPermissionsKey : @[@"email"]

};

[accountStore requestAccessToAccountsWithType:accountType

options:options

completion:^(BOOL granted, NSError *error){

if (granted) {

_currentUser.facebook = [accounts firstObject];

} else {

//ERROR MESSAGE

}

}];

 The same as on Android, it is possible that

the resource server accepts resources

request through its application installed on

iOS.

 In such cases, the service itself often

provides exhaustive documentation on how

to use the application for the request of

authentication tokens.

 Find some examples of such kind of

authorisation:

 Facebook:

https://developers.facebook.com/docs/faceb

ook-login/ios

 Foursquare:

https://developer.foursquare.com/resources/l

ibraries

 Twitter: through Fabric’s API:

https://docs.fabric.io/ios/twitter/authenticatio

n.html

112

Authentication in Mobile Applications

Authorisation on iOS – Applications’ SDKs

https://developers.facebook.com/docs/facebook-login/ios
https://developer.foursquare.com/resources/libraries
https://docs.fabric.io/ios/twitter/authentication.html

 On iOS, it is possible to use any of the three available web views to implement

OAuth.

 Both UIWebView and WKWebView allow users to access credentials that the

user writes on the view; therefore, it is recommended to use

SafariViewController.

 SafariViewController runs in a separate process and, in addition, it will not

request the user’s credentials if they have previously been used with Safari.

 There is an OAuthSwift library with support to make OAuth requests via

SafariViewControllers written in Swift.

 https://github.com/mwermuth/OAuthSwift/tree/swift2.0

 Among the services supported, we can find Twitter, Flickr, Github, Instagram,

Foursquare, Fitbit, Linkedin, Dropbox and Salesforce, among others.

113

Authorisation on iOS – Web Views

Authentication in Mobile Applications

https://github.com/mwermuth/OAuthSwift/tree/swift2.0

Laboratory

11
4

 In this section of the unit, two

laboratories will be carried out in order

to display practically guidelines and

good practices described throughout

this unit.

 The laboratories will imply solving

vulnerabilities identified in both

applications (Android and iOS)

analysed during unit 3.

 The laboratories will be focused on

tasks related to the application’s code.

An S-SDLC should expand its

activities to all the tasks performed

when developing an application.

115

Laboratory

Introduction

 Modifications made to the source code of the applications have been organised

into tasks.

 Tasks are part of a work that students should carry out on their own.

 In order to motivate learning, tasks are divided into two essential parts:

 Motivation and description of the task to perform, including the type of results

expected.

 Procedure to carry out the task and expected results.

 Both parts are described in different slides.

 This is intended for students to try to perform the task with no access to the

procedure.

 Students will be able to use the previously described procedure in order to check

the solution and to solve possible doubts regarding the topic.

116

Tasks

Laboratory

Android Laboratory

 The following tasks will be

performed during the laboratory:

 Preparation of the work

environment.

 Correct configuration of

components of the application.

 Credentials storage.

 Elimination of the administrator

functionality.

 Elimination of information

leakages through logs.

 Permissions.

118

Android Laboratory

Procedure

 A folder is created in Santoku or in the computer in which the environment for

the development of Android is installed.

> cd Documents

> mkdir laboratorio_android

> de laboratorio_android

 The repository is cloned:

> git clone https://github.com/dineshshetty/Android-InsecureBankv2.git

> git checkout 6267a02c80a6a5bff7c26b71d9125c0c7039fe79 .

> cd Android-InsecureBankv2

 On Android, navigate to the InsecureBankv2 folder in the mentioned directory and

select “Choose”.

 After a load period, Android Studio’s window will be displayed with the project.

119

Preparation of the Environment

Android Laboratory

https://github.com/dineshshetty/Android-InsecureBankv2.git

 In this task, the student will solve all the problems detected in the configuration of

components during the analysis of the application.

120

Correct Configuration of Components of the Application

Android Laboratory

Task

Modify the configuration of all the components of the application that have

been declared in the manifest so that they cannot be used in a malicious

way by other applications.

Expected result

A manifest file including the correct security configuration for each of the

components of the application.

121

Correct Configuration of Components of the Application

Android Laboratory

Solution

• First, elements that include exported=true are verified.

• Activities:

• Receivers:

• Provider:

122

Correct Configuration of Components of the Application

Android Laboratory

Solution

• After analysing the activities’ functionality, none of them needs to be

accessed by other applications; therefore, the attribute is eliminated.

• When the functionality of the receiver is analysed, it is observed that,

according to its comments and code, its objective is to send the user an

SMS message to confirm the change of password.

• It should not been executed from the phone due to different reasons:

• It implies an economic cost for it.

• It is highly likely that the user executes the application in a device in

which the bank account is configured.

• The operation is not performed from a reliable element of the system

(the phone).

• Therefore, for the time being, the functionality of the mobile application is

eliminated, and thus, the mention to the manifest receiver is also

eliminated (apart from the code).

• The functionality of the receiver should be implemented in the server via

an SMS gateway (outside the scope of the laboratory).

123

Correct Configuration of Components of the Application

Android Laboratory

Solution

• The code responsible for executing the BroadcastIntent, once the change

of password has been performed, should also be eliminated.

• Such code is located in the ChangePassword activity.

124

Correct Configuration of Components of the Application

Android Laboratory

Solution
• The TrackUserContentProvider provider, as it is described, is in charge of

maintain a list of users registered in the application.

• Without going into detail regarding such kind of provider in a real environment and

whether the implementation is correct (it will be verified in another task), we will

protect it by defining new permissions to display the protection process of a

provider via permissions.

• This way, applications that want to access such information should declare some

of the new permissions.

• First, permissions are defined and, then, they are assigned in the provider.

 In this task, students will review the code related to credentials storage that is
performed in the DoLogin activity in order to adapt its security.

125

Credentials Storage

Android Laboratory

Task

Review and take the proper actions regarding the storage of credentials
performed in the DoLogin activity by default.

Expected result
A DoLogin activity that does not store the user’s credentials insecurely.

126

Credentials Storage

Android Laboratory

Solution

• First, we will study the code of the method mentioned in the statement.

• We can observe that a specific class is being used to encrypt credentials and it is

then stored in a Shared Preferences file.

• The analysis of the cryptographic library shows that cryptography is not being used

in a secure way.

127

Credentials Storage

Android Laboratory

Solution

• Since credentials stored are related to a bank account, they should not been

stored in the device.

• Therefore, the first option should be the elimination of functionalities of the

application related to the storage of such credentials.

• During the elimination, it is verified whether the login is correct. Details of

such login are provided in the device’s log. Then, such functionality is also

eliminated.

128

Credentials Storage

Android Laboratory

Solution

• In addition, the interface elements that allow users to reset credentials

stored and methods that recover information from the LoginActivity and

its corresponding interface should be eliminated.

• Button for data fill-in:

• Initialisation from onCreate():

• fillData method:

129

Credentials Storage

Android Laboratory

Solution

• The corresponding element of the res/activity_log_main.xml layout is

eliminated:

130

Credentials Storage

Android Laboratory

Solution

• From Android 6.0 it is possible to use the system’s KeyStore to create

symmetric keys that allow users to protect certain secrets of the device:

• Once the device has been authenticated, it receives an

authentication token from the server.

• A key used to encrypt the token is created by using the KeyStore.

• The encrypted token is stored in the device’s internal memory.

• When the key is required, the user will be asked for the lock code.

• Find below the code for the creation of a key that requires the user to

enter the lock code every time that it is going to be used:

131

Credentials Storage

Android Laboratory

Solution

The application also saves a file in the SD card for each account movement.

• In order to increase the security of such data, the directory in which files

are stored is moved to the application’s sandbox.

• In the DoTransfer activity:

• In the ViewStatement activity:

• In the previous task, it was observed that there is a button that is not showed in

the application by default and that enables the creation of users in the application.

132

Elimination of the Administrator Functionality

Android Laboratory

Task

Eliminate all the hidden functionalities of the login activity in the mobile

application that may allow attackers to abuse the service via reverse

engineering processes.

Expected result

The code of the mobile application without hidden functionalities in the Login

activity.

133

Elimination of the Administrator Functionality

Android Laboratory

Solution

• The added button should be eliminated in the layout file:

• Even though when checking the code, it is observed that there is no

special functionality added, the code related to the button is eliminated:

• In this task, possible information leakages created by the device’s console during

the execution of the application will be eliminated.

134

Elimination of Information Leakages Through Logs

Android Laboratory

Task

Eliminate all sensitive information leakages that may be created during the

execution of the application.

Expected result

The code of the application without calls to logs or the console, including

information that may be considered as sensitive.

135

Elimination of Information Leakages Through Logs

Android Laboratory

Solution

• First, all the usages of System.out in the application should be searched

through the findUsages option.

• The following results are obtained and eliminated after being inspected.

136

Elimination of Information Leakages Through Logs

Android Laboratory

Solution

• A search of uses of the Log class within the application is conducted. The

following result should be obtained (if the Login entry has not been

previously eliminated).

 Following the least privilege principle, in this task, students will eliminate

permissions that the application does not require to be executed.

137

Permissions

Android Laboratory

Task

Analyse the use of each of the permissions of the application and eliminate

them if they are not required for its proper functioning.

Expected result

An updated manifest including the list of permissions strictly necessary for

the execution of the application.

138

Permissions

Android Laboratory

Solution

• The application uses the following permissions:

139

Permissions

Android Laboratory

Solution

• The Internet permission is necessary for the application to connect to the

back-end of the bank that maintains it.

• The external storage was used to store movements. Since the storage

location has been modified, we can eliminate read and writing

permissions of the SD card.

• The permission to send SMS is not required anymore, since such

operations should be performed from a gateway in the back-end.

• The application does not need to access the device’s credentials.

According to its current configuration, credentials are not stored and, in

case they were, they would be credentials of the application and would

not need any additional permission to access them. GET_ACCOUNTS

and USE_CREDENTIALS permissions will be eliminated.

140

Permissions

Android Laboratory

Solution
• Permissions related to the phone and the history of calls are required for the

application to know the number to which an SMS should be send when the

password is modified. In the ChangePassword activity, we can observe the

following code:

• Since it is not required anymore, it is eliminated together with related permissions.

• Students can also check that there are wrong defined permissions in the

application (first on Android). They are also eliminated.

• The permission to read contacts is not required, since the application does not

need to access them.

• The only permission that is still in the manifest is the INTERNET one.

 Apart from the previous tasks, students may also perform additional tasks that

would improve the security on the studied application.

 As an additional task, it is suggested to implement certificate pinning in the

client’s application.

 To this end, it is recommended to follow the steps below:

 The server application code should be modified to provide SSL connections

(http://flask.pocoo.org/snippets/111/).

 It would be necessary to create a public and a private key with its corresponding

certificate.

 Finally, the pinning would be added to the application, as it was previously explained in

the unit.

□ It is important to take into consideration that when creating the pinning, it is not necessary that

the certificate is signed by a CA already registered in the device.

 If the student decides to complete this task, it is advisable to share the solution in

the corresponding forum.

141

Additional Task

Android Laboratory

http://flask.pocoo.org/snippets/111/

iOS Laboratories

 The following tasks will be

performed during the laboratory:

 Preparation of the work

environment.

 Credentials storage.

 Avoid runtime handling.

 Elimination of the administrator

functionality.

 Discover information leakages by

using the logs.

 Permissions.

143

iOS Laboratories

Procedure

 This task should be performed at a computer configured with Mac OS X, as it

was described in unit 0.

 In order not to interfere with the results of the analysis performed in unit 3, create

a folder named “ios_laboratory” in the documents directory.

> cd Documents

> mkdir ios_laboratory

> Cd ios_laboratory

 The repository is cloned:

> git clone https://github.com/prateek147/DVIA.git

> cd DVIA

 DVIA/DamnVulnerableIOSApp/DamnVulnerableIOSApp.xcodeproj is opened

with Xcode.

144

Preparation of the Environment

iOS Laboratories

 In this task, the saveInUserDefaultsTapped code of the method will be

reviewed in order to avoid information to be stored non encrypted in a file, by
using NSUserDefaults.

145

Data Storage

iOS Laboratories

Task
In the InsecureDataStorageVulnVC file, modify the

saveInUserDefaultsTappedmethod for it to store information securely

in the device.

Expected result

The information introduced in the field should be securely stored in the

device.

146

Data Storage

iOS Laboratories

Solution

• First, we will study the code of the method mentioned in the statement:

• The best storage method to avoid information to be stored without being

encrypted, is to store data in the device’s KeyChain.

• To this end, it is possible to use the API of Apple’s KeyChain directly.
• There is a widely tested library that acts as a wrapper for KeyChain’s API,

called PDKeychainBindingsController.

• The library allows the user to store objects with the same methodology as

NSUserDefaults.

https://developer.apple.com/library/ios/documentation/Security/Conceptual/keychainServConcepts/iPhoneTasks/iPhoneTasks.html
https://github.com/carlbrown/PDKeychainBindingsController

 This task is aimed at preventing attackers from add a debugger to the application

to modify its execution flow.

147

Avoid Runtime Handling

iOS Laboratories

Task

Add the required code to the application to avoid the use of debuggers

during the execution of the application.

Expected result

It will not be possible to load the application when the simulator or a device

connected for its debugging are being used.

148

Avoid Runtime Handling

iOS Laboratory

Solution

• During the unit, we have verified that it is possible to avoid the use of a

debugger by using PT_DENY_ATTACH.

• If the user wants to prevent the debugger even from inspecting the

beginning of the application, the call to ptrace should be added with the

previous parameter when initiating the application, in the main method:

• If the user wants to restrict the usage to some scenarios, it is possible to

add guidelines to the compiler.

 In this task, we will prevent a user from copying information from a text field to

the clipboard. Specifically, this task is focused on the view of leakages in the
SideChannelDataLeakageDetailsVC clipboard.

149

Avoid the Use of the Clipboard

iOS Laboratories

Task
Modify the configuration of the SideChannelDataLeakageDetailsVC view

for the information of fields not to be copied.

Expected result

The application will not display the copy option in any of the fields that allow

data entry.

150

Avoid Runtime Handling

iOS Laboratory

Solution

• Properties of text fields are defined in the storyboard field of the application.

Specifically, they are defined in the Main.storyboard file.

• To modify the properties of the field, it is necessary to access the

corresponding view.

• The CVV field has the option activated to disable the copy of data entered.

• When properties of other fields are modified the same way, the copy of data

entered in the field is avoided.

 Nowadays, the connection via certificate pinning fails because the certificate

stored in the application does not coincide with the one obtained when making

the request to google.co.uk.

151

Certificate Pinning

iOS Laboratories

Task

Modify the application for the connections performed via certificate pinning

to be properly carried out.

Expected result

The application will not display the copy option in any of the fields that allow

data entry.

152

Certificate Pinning

iOS Laboratories

Solution

• The first task to perform is to download the correct certificate in order to

validate it from the application. In this solution, we will modify the

approach and the pinning will be made via the SHA-256 summary of the

certificate.

• The summary may be calculated from the app itself by modifying the
code of the willSendRequestForAuthenticationChallenge

delegate in the TransportLayerProtectionVC controller.

• If we add the following code:

• The summary of the certificate is obtained through the log.

153

Certificate Pinning

iOS Laboratories

Solution

• Then, it is only necessary to modify the code in order to change the

verification made during the connection to verify the certificate received.

• When the application is executed, it is verified that the validation works

properly.

• This task may also be performed by using TrustKit.

https://github.com/datatheorem/TrustKit

Research Exercise

 In this exercise, the student should conduct a research and write the results

obtained on the subject’s forum, in order to discuss them with the rest of

students.

 As it was verified during the unit and the different laboratories, data storage in the

device is one of the greatest challenges for data security, to the point that many

applications include encryption functions to protect, not only credentials, but all their

data.

 In this research exercise, the student is required to:

□ Identify, as we studied on Android and iOS, mechanisms included in Windows Phone and

BlackBerry 10 operative systems for protection of data at rest.

□ Identify the weakest element of data protection and the circumstances required for an attacker

to be able to recover them. Justify the response. This task should be performed for the four

main operative systems: Windows Phone, BlackBerry 10, Android, and iOS.

155

Statement

Research Exercise

Assessment Test

Thank you for your

attention

