Chapter 04.01 Introduction to Matrix Algebra

After reading this chapter, you should be able to

- 1. know what a matrix is,
- 2. *identify special types of matrices,*
- 3. know when two matrices are equal,
- 4. add, subtract and multiply matrices,
- 5. rules of binary matrix operations,
- 6. find transpose of a matrix,
- 7. find inverse of a matrix and its application to solving simultaneous linear equations.

What is a matrix?

Matrices are everywhere. If you have used a spreadsheet such as Excel or written a table, you have used a matrix. Matrices make presentation of numbers clearer and make calculations easier to program. Look at the matrix below about the sale of tires in a Blowoutr'us store – given by quarter and make of tires.

	Quarter 1	Quarter 2	Quarter 3	Quarter 4
Tirestone	25	20	3	2]
Michigan	5	10	15	25
Copper	6	16	7	27

If one wants to know how many *Copper* tires were sold in *Quarter 4*, we go along the row *Copper* and column *Quarter 4* and find that it is 27.

So what is a matrix?

A matrix is a rectangular array of elements. The elements can be symbolic expressions or numbers. Matrix [A] is denoted by

	a_{11}	a_{12}	 a_{1n}
[A] =	a_{21} :	<i>a</i> ₂₂	 a_{2n}
	:		:
	a_{m1}	a_{m2}	 a_{mn}
			-

Row *i* of [A] has *n* elements and is $\begin{bmatrix} a_{i1} & a_{i2} \dots a_{in} \end{bmatrix}$ and

Column *j* of [A] has *m* elements and is $\begin{bmatrix}
a_{1j} \\
a_{2j} \\
\vdots \\
a_{mi}
\end{bmatrix}$

Each matrix has rows and columns and this defines the size of the matrix. If a matrix [A] has *m* rows and *n* columns, the size of the matrix is denoted by $m \times n$. The matrix [A] may also be denoted by $[A]_{m \times n}$ to show that [A] is a matrix with *m* rows and *n* columns.

Each entry in the matrix is called the entry or element of the matrix and is denoted by a_{ij} where *i* is the row number and *j* is the column number of the element.

The matrix for the tire sales example could be denoted by the matrix [A] as

	25	20	3	2	
[A]=	5	10	15	25	
	6	16	7	27	

There are 3 rows and 4 columns, so the size of the matrix is 3×4 . In the above [A] matrix, $a_{34} = 27$.

What are the special types of matrices?

Vector: A vector is a matrix that has only one row or one column. There are two types of vectors – row vectors and column vectors.

Row vector: If a matrix has one row, it is called a row vector

 $[B] = [b_1 \ b_2 \dots b_m]$

and m is the dimension of the row vector.

Example 1

Give an example of a row vector.

Solution

 $[B] = [25 \ 20 \ 3 \ 2 \ 0]$ is an example of a row vector of dimension 5.

Column vector: If a matrix has one column, it is called a column vector

$$[\mathbf{C}] = \begin{bmatrix} c_1 \\ \vdots \\ \vdots \\ c_n \end{bmatrix}$$

and n is the dimension of the vector.

Example 2

Give an example of a column vector.

Solution

$$\begin{bmatrix} C \end{bmatrix} = \begin{bmatrix} 25 \\ 5 \\ 6 \end{bmatrix}$$

is an example of a column vector of dimension 3.

Square matrix: If the number of rows (m) of a matrix is equal to the number of columns (n) of the matrix, (m = n), it is called a square matrix. The entries $a_{11}, a_{22}, \dots, a_{nn}$ are called the diagonal elements of a square matrix. Sometimes the diagonal of the matrix is also called the principal or main of the matrix.

Example 3

Give an example of a square matrix. **Solution**

$$\begin{bmatrix} A \end{bmatrix} = \begin{bmatrix} 25 & 20 & 3 \\ 5 & 10 & 15 \\ 6 & 15 & 7 \end{bmatrix}$$

is a square matrix as it has same number of rows and columns, that is, three. The diagonal elements of [A] are $a_{11} = 25$, $a_{22} = 10$, $a_{33} = 7$.

Upper triangular matrix: A $m \times n$ matrix for which $a_{ij} = 0$, i > j is called an upper triangular matrix. That is, all the elements below the diagonal entries are zero.

Example 4

Give an example of an upper triangular matrix. **Solution**

$$\begin{bmatrix} A \end{bmatrix} = \begin{bmatrix} 10 & -7 & 0 \\ 0 & -0.001 & 6 \\ 0 & 0 & 15005 \end{bmatrix}$$

is an upper triangular matrix.

Lower triangular matrix: A $m \times n$ matrix for which $a_{ij} = 0$, j > i is called a lower triangular matrix. That is, all the elements above the diagonal entries are zero.

Example 5

Give an example of a lower triangular matrix.

Solution

$$\begin{bmatrix} A \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0.3 & 1 & 0 \\ 0.6 & 2.5 & 1 \end{bmatrix}$$

is a lower triangular matrix.

Diagonal matrix: A square matrix with all non-diagonal elements equal to zero is called a diagonal matrix, that is, only the diagonal entries of the square matrix can be non-zero, $(a_{ij} = 0, i \neq j)$.

Example 6

Give examples of a diagonal matrix. **Solution**

$$\begin{bmatrix} \mathbf{A} \end{bmatrix} = \begin{bmatrix} 3 & 0 & 0 \\ 0 & 2.1 & 0 \\ 0 & 0 & 5 \end{bmatrix}$$

is a diagonal matrix.

Any or all the diagonal entries of a diagonal matrix can be zero. For example

$$\begin{bmatrix} A \end{bmatrix} = \begin{bmatrix} 3 & 0 & 0 \\ 0 & 2.1 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

is also a diagonal matrix.

Identity matrix: A diagonal matrix with all diagonal elements equal to one is called an identity matrix, $(a_{ij} = 0, i \neq j; and a_{ii} = 1 \text{ for all } i)$.

Example 7

Give an example of an identity matrix. **Solution**

$$[\mathbf{A}] = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

is an identity matrix.

Zero matrix: A matrix whose all entries are zero is called a zero matrix, $(a_{ij} = 0 \text{ for all } i \text{ and } j)$.

Example 8

Give examples of a zero matrix. **Solution**

are all examples of a zero matrix.

Tridiagonal matrices: A tridiagonal matrix is a square matrix in which all elements not on the major diagonal, the diagonal above the major diagonal and the diagonal below the major diagonal are zero.

Example 9

Give an example of a tridiagonal matrix. **Solution**

$$\begin{bmatrix} A \end{bmatrix} = \begin{bmatrix} 2 & 4 & 0 & 0 \\ 2 & 3 & 9 & 0 \\ 0 & 0 & 5 & 2 \\ 0 & 0 & 3 & 6 \end{bmatrix}$$

is a tridiagonal matrix.

When are two matrices considered to be equal?

Two matrices [A] and [B] are equal if the size of [A] and [B] is the same (number of rows and columns are same for [A] and [B]) and $a_{ij} = b_{ij}$ for all *i* and *j*.

Example 10

What would make

$$\begin{bmatrix} A \end{bmatrix} = \begin{bmatrix} 2 & 3 \\ 6 & 7 \end{bmatrix}$$
 to be equal to
$$\begin{bmatrix} B \end{bmatrix} = \begin{bmatrix} b_{11} & 3 \\ 6 & b_{22} \end{bmatrix},$$

Solution

The two matrices [A] and [B] would be equal if $b_{11} = 2, b_{22} = 7.$

How do you add two matrices?

Two matrices [A] and [B] can be added only if they are the same size, then the addition is shown as

[C] = [A] + [B] where

 $c_{ij} = a_{ij} + b_{ij}$

Example 11

Add two matrices

$$\begin{bmatrix} A \end{bmatrix} = \begin{bmatrix} 5 & 2 & 3 \\ 1 & 2 & 7 \end{bmatrix}$$
$$\begin{bmatrix} B \end{bmatrix} = \begin{bmatrix} 6 & 7 & -2 \\ 3 & 5 & 19 \end{bmatrix}$$

Solution

$$\begin{bmatrix} C \end{bmatrix} = \begin{bmatrix} A \end{bmatrix} + \begin{bmatrix} B \end{bmatrix}$$
$$= \begin{bmatrix} 5 & 2 & 3 \\ 1 & 2 & 7 \end{bmatrix} + \begin{bmatrix} 6 & 7 & -2 \\ 3 & 5 & 19 \end{bmatrix}$$
$$= \begin{bmatrix} 5+6 & 2+7 & 3-2 \\ 1+3 & 2+5 & 7+19 \end{bmatrix}$$
$$= \begin{bmatrix} 11 & 9 & 1 \\ 4 & 7 & 26 \end{bmatrix}$$

Example 12

Blowout r'us store has two locations A and B, and their sales of tires are given by make (in rows) and quarters (in columns) as shown below.

$$\begin{bmatrix} A \end{bmatrix} = \begin{bmatrix} 25 & 20 & 3 & 2 \\ 5 & 10 & 15 & 25 \\ 6 & 16 & 7 & 27 \end{bmatrix}$$
$$\begin{bmatrix} B \end{bmatrix} = \begin{bmatrix} 20 & 5 & 4 & 0 \\ 3 & 6 & 15 & 21 \\ 4 & 1 & 7 & 20 \end{bmatrix}$$

where the rows represent sale of Tirestone, Michigan and Copper tires and the columns represent the quarter number - 1, 2, 3, 4. What are the total sales of the two locations by make and quarter?

Solution

$$\begin{bmatrix} C \end{bmatrix} = \begin{bmatrix} A \end{bmatrix} + \begin{bmatrix} B \end{bmatrix}$$
$$= \begin{bmatrix} 25 & 20 & 3 & 2 \\ 5 & 10 & 15 & 25 \\ 6 & 16 & 7 & 27 \end{bmatrix} + \begin{bmatrix} 20 & 5 & 4 & 0 \\ 3 & 6 & 15 & 21 \\ 4 & 1 & 7 & 20 \end{bmatrix}$$
$$= \begin{bmatrix} (25+20) & (20+5) & (3+4) & (2+0) \\ (5+3) & (10+6) & (15+15) & (25+21) \\ (6+4) & (16+1) & (7+7) & (27+20) \end{bmatrix}$$
$$= \begin{bmatrix} 45 & 25 & 7 & 2 \\ 8 & 16 & 30 & 46 \\ 10 & 17 & 14 & 47 \end{bmatrix}$$

So if one wants to know the total number of Copper tires sold in quarter 4 in the two locations, we would look at Row 3 – Column 4 to give

 $c_{34} = 47.$

How do you subtract two matrices?

Two matrices [A] and [B] can be subtracted only if they are the same size and the subtraction is given by

where
$$\begin{bmatrix} D \end{bmatrix} = \begin{bmatrix} A \end{bmatrix} - \begin{bmatrix} B \end{bmatrix}$$
$$d_{ij} = a_{ij} - b_{ij}$$

Example 13

Subtract matrix [B] from matrix [A].

$$\begin{bmatrix} A \end{bmatrix} = \begin{bmatrix} 5 & 2 & 3 \\ 1 & 2 & 7 \end{bmatrix}$$
$$\begin{bmatrix} B \end{bmatrix} = \begin{bmatrix} 6 & 7 & -2 \\ 3 & 5 & 19 \end{bmatrix}$$

Solution

$$\begin{bmatrix} C \end{bmatrix} = \begin{bmatrix} A \end{bmatrix} - \begin{bmatrix} B \end{bmatrix}$$
$$= \begin{bmatrix} 5 & 2 & 3 \\ 1 & 2 & 7 \end{bmatrix} - \begin{bmatrix} 6 & 7 & -2 \\ 3 & 5 & 19 \end{bmatrix}$$
$$= \begin{bmatrix} 5 - 6 & 2 - 7 & 3 - (-2) \\ 1 - 3 & 2 - 5 & 7 - 19 \end{bmatrix}$$
$$= \begin{bmatrix} -1 & -5 & 5 \\ -2 & -3 & -12 \end{bmatrix}$$

Example 14

Blowout r'us store has two locations A and B and their sales of tires are given by make (in rows) and quarters (in columns) as shown below.

$$\begin{bmatrix} A \end{bmatrix} = \begin{bmatrix} 25 & 20 & 3 & 2 \\ 5 & 10 & 15 & 25 \\ 6 & 16 & 7 & 27 \end{bmatrix}$$
$$\begin{bmatrix} B \end{bmatrix} = \begin{bmatrix} 20 & 5 & 4 & 0 \\ 3 & 6 & 15 & 21 \\ 4 & 1 & 7 & 20 \end{bmatrix}$$

where the rows represent sale of Tirestone, Michigan and Copper tires and the columns represent the quarter number-1, 2, 3, 4. How many more tires did store A sell than store B of each brand in each quarter?

Solution

$$\begin{bmatrix} D \end{bmatrix} = \begin{bmatrix} A \end{bmatrix} - \begin{bmatrix} B \end{bmatrix}$$
$$= \begin{bmatrix} 25 & 20 & 3 & 2 \\ 5 & 10 & 15 & 25 \\ 6 & 16 & 7 & 27 \end{bmatrix} - \begin{bmatrix} 20 & 5 & 4 & 0 \\ 3 & 6 & 15 & 21 \\ 4 & 1 & 7 & 20 \end{bmatrix}$$
$$= \begin{bmatrix} 25 - 20 & 20 - 5 & 3 - 4 & 2 - 0 \\ 5 - 3 & 10 - 6 & 15 - 15 & 25 - 21 \\ 6 - 4 & 16 - 1 & 7 - 7 & 27 - 20 \end{bmatrix}$$
$$= \begin{bmatrix} 5 & 15 & -1 & 2 \\ 2 & 4 & 0 & 4 \\ 2 & 15 & 0 & 7 \end{bmatrix}$$

So if you want to know how many more Copper Tires were sold in quarter 4 in Store A than Store B, $d_{34} = 7$. Note that $d_{13} = -1$ implying that store A sold 1 less Michigan tire than Store B in quarter 3.

How do I multiply two matrices?

Two matrices [A] and [B] can be multiplied only if the number of columns of [A] is equal to the number of rows of [B] to give

$$[\mathbf{C}]_{m \times n} = [\mathbf{A}]_{m \times p} [\mathbf{B}]_{p \times n}$$

If [A] is a $m \times p$ matrix and [B] is a $p \times n$ matrix, the resulting matrix [C] is a $m \times n$ matrix.

So how does one calculate the elements of [C] matrix?

$$c_{ij} = \sum_{k=1}^{p} a_{ik} b_{kj}$$

= $a_{i1}b_{1j} + a_{i2}b_{2j} + \dots + a_{ip}b_{pj}$

for each i = 1, 2, ..., m, and j = 1, 2, ..., n.

To put it in simpler terms, the i_{th} row and j_{th} column of the [C] matrix in [C] = [A][B] is calculated by multiplying the i_{th} row of [A] by the j_{th} column of [B], that is,

$$c_{ij} = \begin{bmatrix} a_{i1} & a_{i2} & \dots & a_{ip} \end{bmatrix} \begin{bmatrix} b_{1j} \\ b_{2j} \\ \vdots \\ \vdots \\ b_{pj} \end{bmatrix}$$

= $a_{i1} & b_{1j} + a_{i2} & b_{2j} + \dots + a_{ip} & b_{pj}$.
= $\sum_{k=1}^{p} a_{ik} & b_{kj}$

Example 15

Given

$$\begin{bmatrix} A \end{bmatrix} = \begin{bmatrix} 5 & 2 & 3 \\ 1 & 2 & 7 \end{bmatrix}$$
$$\begin{bmatrix} B \end{bmatrix} = \begin{bmatrix} 3 & -2 \\ 5 & -8 \\ 9 & -10 \end{bmatrix}$$

find

$$[\mathbf{C}] = [\mathbf{A}] [\mathbf{B}]$$

Solution

 c_{12} can be found by multiplying the first row of [A] by the second column of [B],

$$c_{12} = \begin{bmatrix} 5 & 2 & 3 \end{bmatrix} \begin{bmatrix} -2 \\ -8 \\ -10 \end{bmatrix}$$
$$= (5)(-2) + (2)(-8) + (3)(-10)$$
$$= -56$$

Similarly, one can find the other elements of [C] to give

$$[C] = \begin{bmatrix} 52 & -56 \\ 76 & -88 \end{bmatrix}$$

Example 16

Blowout r'us store location A and the sales of tires are given by make (in rows) and quarters (in columns) as shown below

$$\begin{bmatrix} A \end{bmatrix} = \begin{bmatrix} 25 & 20 & 3 & 2 \\ 5 & 10 & 15 & 25 \\ 6 & 16 & 7 & 27 \end{bmatrix}$$

where the rows represent sale of Tirestone, Michigan and Copper tires and the columns represent the quarter number - 1, 2, 3, 4. Find the per quarter sales of store A if following are the prices of each tire.

Tirestone = \$33.25

Michigan = 40.19

Copper = \$25.03

Solution

The answer is given by multiplying the price matrix by the quantity sales of store A. The price matrix is [33.25 40.19 25.03], then the per quarter sales of store A would be given by

$$\begin{bmatrix} C \end{bmatrix} = \begin{bmatrix} 33.25 & 40.19 & 25.03 \end{bmatrix} \begin{bmatrix} 25 & 20 & 3 & 2 \\ 5 & 10 & 15 & 25 \\ 6 & 16 & 7 & 27 \end{bmatrix}$$

$$c_{ij} = \sum_{k=1}^{3} a_{ik} b_{kj}$$

$$c_{11} = \sum_{k=1}^{3} a_{1k} b_{k1}$$

$$= a_{11}b_{11} + a_{12}b_{21} + a_{13}b_{31}$$

$$= (33.25)(25) + (40.19)(5) + (25.03)(6)$$

$$= \$1182.38$$
arly

Similarly

 $c_{12} = \$1467.38,$ $c_{13} = \$877.81,$ $c_{14} = \$1747.06.$

So each quarter sales of store A in dollars are given by the four columns of the row vector $[C] = [1182.38 \quad 1467.38 \quad 877.81 \quad 1747.06]$

Remember since we are multiplying a 1×3 matrix by $a 3 \times 4$ matrix, the resulting matrix is a 1×4 matrix.

What is a scalar product of a constant and a matrix?

If [A] is a $n \times n$ matrix and k is a real number, then the scalar product of k and [A] is another matrix [B], where $b_{ij} = k a_{ij}$.

Example 17

Let
$$[A] = \begin{bmatrix} 2.1 & 3 & 2 \\ 5 & 1 & 6 \end{bmatrix}$$
. Find 2 [A]

Solution

$$[A] = \begin{bmatrix} 2.1 & 3\\ 5 & 1 \end{bmatrix}$$

Then

$$2[A] = 2\begin{bmatrix} 2.1 & 3 & 2\\ 5 & 1 & 6 \end{bmatrix}$$
$$= \begin{bmatrix} (2)(2.1) & (2)(3) & (2)(2)\\ (2)(5) & (2)(1) & (2)(6) \end{bmatrix}$$
$$= \begin{bmatrix} 4.2 & 6 & 4\\ 10 & 2 & 12 \end{bmatrix}$$

2 6

What is a linear combination of matrices?

If $[A_1]$, $[A_2]$,...., $[A_p]$ are matrices of the same size and k_1, k_2, \dots, k_p are scalars, then $k_1[A_1] + k_2[A_2] + \dots + k_p[A_p]$ is called a linear combination of $[A_1]$, $[A_2]$,..., $[A_p]$

Example 18

If

$$\begin{bmatrix} A_1 \end{bmatrix} = \begin{bmatrix} 5 & 6 & 2 \\ 3 & 2 & 1 \end{bmatrix}, \begin{bmatrix} A_2 \end{bmatrix} = \begin{bmatrix} 2.1 & 3 & 2 \\ 5 & 1 & 6 \end{bmatrix}, \begin{bmatrix} A_3 \end{bmatrix} = \begin{bmatrix} 0 & 2.2 & 2 \\ 3 & 3.5 & 6 \end{bmatrix}$$

then find

$$[A_1] + 2[A_2] - 0.5[A_3]$$

Solution

$$= \begin{bmatrix} 5 & 6 & 2 \\ 3 & 2 & 1 \end{bmatrix} + 2 \begin{bmatrix} 2.1 & 3 & 2 \\ 5 & 1 & 6 \end{bmatrix} - 0.5 \begin{bmatrix} 0 & 2.2 & 2 \\ 3 & 3.5 & 6 \end{bmatrix}$$
$$= \begin{bmatrix} 5 & 6 & 2 \\ 3 & 2 & 1 \end{bmatrix} + \begin{bmatrix} 4.2 & 6 & 4 \\ 10 & 2 & 12 \end{bmatrix} - \begin{bmatrix} 0 & 1.1 & 1 \\ 1.5 & 1.75 & 3 \end{bmatrix}$$
$$= \begin{bmatrix} 9.2 & 10.9 & 5 \\ 11.5 & 2.25 & 10 \end{bmatrix}$$

What are some of the rules of binary matrix operations?

Commutative law of addition

If [A] and [B] are *mxn* matrices, then

$$[A]+[B]=[B]+[A]$$

Associate law of addition

If [A], [B] and [C] all are mxn matrices, then [A]+([B]+[C]) = ([A]+[B])+[C]

Associate law of multiplication

If [A], [B] and [C] are *mxn*, *nxp* and *pxr* size matrices, respectively, then [A]([B][C]) = ([A][B])[C]

and the resulting matrix size on both sides is *mxr*. **Distributive law**

If [A] and [B] are *mxn* size matrices, and [C] and [D] are *nxp* size matrices $\begin{bmatrix} A \end{bmatrix} \begin{bmatrix} C \end{bmatrix} + \begin{bmatrix} D \end{bmatrix} = \begin{bmatrix} A \end{bmatrix} \begin{bmatrix} C \end{bmatrix} + \begin{bmatrix} A \end{bmatrix} \begin{bmatrix} D \end{bmatrix}$ $\begin{bmatrix} A \end{bmatrix} + \begin{bmatrix} B \end{bmatrix} \begin{bmatrix} C \end{bmatrix} = \begin{bmatrix} A \end{bmatrix} \begin{bmatrix} C \end{bmatrix} + \begin{bmatrix} B \end{bmatrix} \begin{bmatrix} C \end{bmatrix}$

and the resulting matrix size on both sides is mxp.

Example 19

Illustrate the associative law of multiplication of matrices using

$$[A] = \begin{bmatrix} 1 & 2 \\ 3 & 5 \\ 0 & 2 \end{bmatrix}, \quad [B] = \begin{bmatrix} 2 & 5 \\ 9 & 6 \end{bmatrix}, \quad [C] = \begin{bmatrix} 2 & 1 \\ 3 & 5 \end{bmatrix}$$

Solution

$$[B][C] = \begin{bmatrix} 2 & 5 \\ 9 & 6 \end{bmatrix} \begin{bmatrix} 2 & 1 \\ 3 & 5 \end{bmatrix} = \begin{bmatrix} 19 & 27 \\ 36 & 39 \end{bmatrix}$$
$$[A][B][C] = \begin{bmatrix} 1 & 2 \\ 3 & 5 \\ 0 & 2 \end{bmatrix} \begin{bmatrix} 19 & 27 \\ 36 & 39 \end{bmatrix} = \begin{bmatrix} 91 & 105 \\ 237 & 276 \\ 72 & 78 \end{bmatrix}$$
$$[A][B] = \begin{bmatrix} 1 & 2 \\ 3 & 5 \\ 0 & 2 \end{bmatrix} \begin{bmatrix} 2 & 5 \\ 9 & 6 \end{bmatrix} = \begin{bmatrix} 20 & 17 \\ 51 & 45 \\ 18 & 12 \end{bmatrix}$$
$$[A][B][C] = \begin{bmatrix} 20 & 17 \\ 51 & 45 \\ 18 & 12 \end{bmatrix} \begin{bmatrix} 2 & 1 \\ 3 & 5 \end{bmatrix} = \begin{bmatrix} 91 & 105 \\ 237 & 276 \\ 72 & 78 \end{bmatrix}$$

The above illustrates the associate law of multiplication of matrices.

Is [A][B]=[B][A]?

First both operations [A][B] and [B][A] are only possible if [A] and [B] are square matrices of same size. Why? If [A][B] exists, number of columns of [A] has to be same as the number of rows of [B] and if [B][A] exists, number of columns of [B] has to be same as the number of rows of [A].

Even then in general $[A][B] \neq [B][A]$.

Example 20

Illustrate if [A][B]=[B][A] for the following matrices

$$\begin{bmatrix} \mathbf{A} \end{bmatrix} = \begin{bmatrix} 6 & 3 \\ 2 & 5 \end{bmatrix}, \quad \begin{bmatrix} \mathbf{B} \end{bmatrix} = \begin{bmatrix} -3 & 2 \\ 1 & 5 \end{bmatrix}$$

Solution

$$[A][B] = \begin{bmatrix} 6 & 3 \\ 2 & 5 \end{bmatrix} \begin{bmatrix} -3 & 2 \\ 1 & 5 \end{bmatrix}$$
$$= \begin{bmatrix} -15 & 27 \\ -1 & 29 \end{bmatrix}$$
$$[B][A] = \begin{bmatrix} -3 & 2 \\ 1 & 5 \end{bmatrix} \begin{bmatrix} 6 & 3 \\ 2 & 5 \end{bmatrix}$$
$$= \begin{bmatrix} -14 & 1 \\ 16 & 28 \end{bmatrix}$$
$$[A][B] \neq [B][A]$$

Transpose of a matrix: Let [A] be a $m \times n$ matrix. Then [B] is the transpose of the [A] if $b_{ji} = a_{ij}$ for all *i* and *j*. That is, the *i*th row and the *j*th column element of [A] is the *j*th row and *i*th column element of [B]. Note, [B] would be a $n \times m$ matrix. The transpose of [A] is denoted by [A]^t.

Example 21

Find the transpose of

$$[A] = \begin{bmatrix} 25 & 20 & 3 & 2 \\ 5 & 10 & 15 & 25 \\ 6 & 16 & 7 & 27 \end{bmatrix}$$

Solution

The transpose of [A] is

$$\begin{bmatrix} \mathbf{A} \end{bmatrix}^T = \begin{bmatrix} 25 & 5 & 6\\ 20 & 10 & 16\\ 3 & 15 & 7\\ 2 & 25 & 27 \end{bmatrix}$$

Note, the transpose of a row vector is a column vector and the transpose of a column vector is a row vector.

Also, note that the transpose of a transpose of a matrix is the matrix itself, that is,

 $([\mathbf{A}]^T)^T = [\mathbf{A}]$. Also, $([\mathbf{A}] + [\mathbf{B}])^T = [\mathbf{A}]^T + [\mathbf{B}]^T; (c[\mathbf{A}])^T = c[\mathbf{A}]^T$.

Symmetric matrix: A square matrix [A] with real elements where $a_{ij} = a_{ji}$ for i = 1,...,nand j = 1,...,n is called a symmetric matrix. This is same as, if $[A] = [A]^T$, then [A] is a symmetric matrix.

Example 22

Give an example of a symmetric matrix. **Solution**

$$\begin{bmatrix} A \end{bmatrix} = \begin{bmatrix} 21.2 & 3.2 & 6 \\ 3.2 & 21.5 & 8 \\ 6 & 8 & 9.3 \end{bmatrix}$$

is a symmetric matrix as $a_{12} = a_{21} = 3.2$; $a_{13} = a_{31} = 6$ and $a_{23} = a_{32} = 8$.

Matrix algebra is used for solving system of equations. Can you illustrate this concept?

Matrix algebra is used to solve a system of simultaneous linear equations. In fact, for many mathematical procedures such as solution of set of nonlinear equations, interpolation, integration, and differential equations, the solutions reduce to a set of simultaneous linear equations. Let us illustrate with an example for interpolation.

Example 23

The upward velocity of a rocket is given at three different times on the following table

Time, t	Velocity, v
S	m/s
5	106.8
8	177.2
12	279.2

The velocity data is approximated by a polynomial as

 $v(t) = at^2 + bt + c$, $5 \le t \le 12$.

Set up the equations in matrix form to find the coefficients a,b,c of the velocity profile. Solution

The polynomial is going through three data points $(t_1, v_1), (t_2, v_2)$, and (t_3, v_3) where from the above table

$$t_1 = 5, v_1 = 106.8$$

 $t_2 = 8, v_2 = 177.2$
 $t_3 = 12, v_3 = 279.2$

Requiring that $v(t) = at^2 + bt + c$ passes through the three data points gives

$$v(t_{1}) = v_{1} = at_{1}^{2} + bt_{1} + c$$

$$v(t_{2}) = v_{2} = at_{2}^{2} + bt_{2} + c$$

$$v(t_{3}) = v_{3} = at_{3}^{2} + bt_{3} + c$$
Substituting the data $(t_{1}, v_{1}), (t_{2}, v_{2}), (t_{3}, v_{3})$ gives
$$a(5^{2}) + b(5) + c = 106.8$$

$$a(8^{2}) + b(8) + c = 177.2$$

$$a(12^{2}) + b(12) + c = 279.2$$

or

25a + 5b + c = 106.864a + 8b + c = 177.2144a + 12b + c = 279.2

This set of equations can be rewritten in the matrix form as

25a +	5b +	c	[106.8]
64 <i>a</i> +	8b +	<i>c</i> =	177.2
$\begin{bmatrix} 25a + \\ 64a + \\ 144a + \end{bmatrix}$	12 <i>b</i> +	$c \rfloor$	279.2

The above equation can be written as a linear combination as follows

	25		5		1		[106.8]	
a	64	+b	8	+ c	1	=	177.2	
	144		12		1		279.2	

and further using matrix multiplications gives

25	5	1]	a		[106.8]
64	8	1	b	=	177.2
144	12	1	c		279.2

The above is an illustration of why matrix algebra is needed. The complete solution to the set of equations is given later in this chapter.

For a general set of *m* linear equations and *n* unknowns,

 $a_{11}x_1 + a_{22}x_2 + \dots + a_{1n}x_n = c_1$

$a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = c_2$

 $a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = c_m$

can be rewritten in the matrix form as

$\begin{bmatrix} a_{11} \end{bmatrix}$	a_{12}		a_{1n}	$\begin{bmatrix} x_1 \end{bmatrix}$		c_1	
<i>a</i> ₂₁	<i>a</i> ₂₂		a_{2n}	$ x_2 $		c_2	
:			:	.	=	•	
:			:	.		•	
a_{m1}	a_{m2}		$\begin{bmatrix} a_{1n} \\ a_{2n} \\ \vdots \\ \vdots \\ a_{mn} \end{bmatrix}$	$\lfloor x_n \rfloor$		C_m	
.1	<i>.</i> .	1	L 1 L		1		

Denoting the matrices by [A], [X], and [C], the system of equation is [A] [X]=[C], where [A] is called the coefficient matrix, [C] is called the right hand side vector and [X] is called the solution vector.

Sometimes [A] [X] = [C] systems of equations is written in the augmented form. That is

$$[A:C] = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & & & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \\ \vdots \\ a_{mn} & a_{m2} & \dots & a_{mn} \\ \vdots \\ c_n \end{bmatrix}$$

Can you divide two matrices?

If [A] [B] = [C] is defined, it might seem intuitive that $[A] = \frac{[C]}{[B]}$, but matrix division is not defined. However an inverse of a matrix can be defined for certain types of square matrices. The inverse of a square matrix [A], if existing, is denoted by [A] ⁻¹ such that $[A][A]^{-1} = [I] = [A]^{-1}[A]$.

In other words, let [A] be a square matrix. If [B] is another square matrix of same size such that [B][A] = [I], then [B] is the inverse of [A]. [A] is then called to be invertible or nonsingular. If [A] ⁻¹ does not exist, [A] is called to be noninvertible or singular. If [A] and [B] are two *nxn* matrices such that [B] [A] = [I], then these statements are also true

- a) [B] is the inverse of [A]
- b) [A] is the inverse of [B]
- c) [A] and [B] are both invertible
- d) [A] [B]=[I].
- e) [A] and [B] are both nonsingular
- f) all columns of [A] or [B]are linearly independent
- g) all rows of [A] or [B] are linearly independent.

Example 24

Show if

$$[B] = \begin{bmatrix} 3 & 2 \\ 5 & 3 \end{bmatrix} \text{ is the inverse of } [A] = \begin{bmatrix} -3 & 2 \\ 5 & -3 \end{bmatrix}$$

Solution

$$[B][A] = \begin{bmatrix} 3 & 2 \\ 5 & 3 \end{bmatrix} \begin{bmatrix} -3 & 2 \\ 5 & -3 \end{bmatrix}$$
$$= \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$
$$= [I]$$

Since [B] [A] = [I], [B] is the inverse of [A] and [A] is the inverse of [B]. But we can also show that

$$[A][B] = \begin{bmatrix} -3 & 2\\ 5 & -3 \end{bmatrix} \begin{bmatrix} 3 & 2\\ 5 & 3 \end{bmatrix}$$
$$= \begin{bmatrix} 1 & 0\\ 0 & 1 \end{bmatrix} = \begin{bmatrix} I \end{bmatrix}$$

to show that [A] is the inverse of [B].

Can I use the concept of the inverse of a matrix to find the solution of a set of equations [A] [X] = [C]?

Yes, if the number of equations is same as the number of unknowns, the coefficient matrix [A] is a square matrix.

Given

$$[A][X] = [C]$$

Then, if [A]⁻¹ exists, multiplying both sides by [A]⁻¹
$$[A]^{-1} [A][X] = [A]^{-1} [C]$$

$$[I][X] = [A]^{-1} [C]$$

$$[X] = [A]^{-1} [C]$$

This implies that if we are able to find $[A]^{-1}$, the solution vector of [A][X] = [C] is simply a multiplication of $[A]^{-1}$ and the right hand side vector, [C]. **How do I find the inverse of a matrix?**

If [A] is a $n \times n$ matrix, then [A]⁻¹ is a $n \times n$ matrix and according to the definition of inverse of a matrix

 $[A][A]^{-1} = [I].$

Denoting

$$[\mathbf{A}] = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{bmatrix}$$
$$[\mathbf{A}]^{-1} = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{bmatrix}$$
$$[\mathbf{I}] = \begin{bmatrix} 1 & 0 & \cdots & 0 \\ 0 & 1 & \cdots & 0 \\ 0 & 1 & \cdots & 0 \\ 0 & 1 & \cdots & 0 \\ 0 & 0 & \cdots & \vdots \\ \vdots & \vdots & \vdots & \vdots \\ 0 & \cdots & \cdots & 1 \end{bmatrix}$$

Using the definition of matrix multiplication, the first column of the $[A]^{-1}$ matrix can then be found by solving

 $\begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{bmatrix} \begin{bmatrix} a_{11} \\ a_{21} \\ \vdots \\ \vdots \\ a_{n1} \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \\ \vdots \\ a_{n1} \end{bmatrix}$

Similarly, one can find the other columns of the $[A]^{-1}$ matrix by changing the right hand side accordingly.

Example 25

The upward velocity of the rocket is given by

2	0	
	Time, t	Velocity, v
	S	m/s
	5	106.8
	8	177.2
	12	279.2

In an earlier example, we wanted to approximate the velocity profile by

 $v(t) = at^2 + bt + c, 5 \le 8 \le 12$

We found that the coefficients a, b, c are given by

$$\begin{bmatrix} 25 & 5 & 1 \\ 64 & 8 & 1 \\ 144 & 12 & 1 \end{bmatrix} \begin{bmatrix} a \\ b \\ c \end{bmatrix} = \begin{bmatrix} 106.8 \\ 177.2 \\ 279.2 \end{bmatrix}$$

First find the inverse of
$$\begin{bmatrix} A \end{bmatrix} = \begin{bmatrix} 25 & 5 & 1 \\ 64 & 8 & 1 \\ 144 & 12 & 1 \end{bmatrix}$$

and then use the definition of inverse to find the coefficients a, b, c. Solution

If
$$[A]^{-1} = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix}$$

is the inverse of [A], Then

$$\begin{bmatrix} 25 & 5 & 1 \\ 64 & 8 & 1 \\ 144 & 12 & 1 \end{bmatrix} \begin{bmatrix} a'_{11} & a'_{12} & a'_{13} \\ a'_{21} & a'_{22} & a'_{23} \\ a'_{31} & a'_{32} & a'_{33} \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

gives three sets of equations

$$\begin{bmatrix} 25 & 5 & 1 \\ 64 & 8 & 1 \\ 144 & 12 & 1 \end{bmatrix} \begin{bmatrix} a'_{11} \\ a'_{21} \\ a'_{31} \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$$
$$\begin{bmatrix} 25 & 5 & 1 \\ 64 & 8 & 1 \\ 144 & 12 & 1 \end{bmatrix} \begin{bmatrix} a'_{12} \\ a'_{22} \\ a'_{32} \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$$
$$\begin{bmatrix} 25 & 5 & 1 \\ 64 & 8 & 1 \\ 144 & 12 & 1 \end{bmatrix} \begin{bmatrix} a'_{13} \\ a'_{23} \\ a'_{33} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$$

Solving the above three sets of equations separately gives

$$\begin{bmatrix} a_{11} \\ a_{21} \\ a_{31} \end{bmatrix} = \begin{bmatrix} 0.04762 \\ -0.9524 \\ 4.571 \end{bmatrix}$$
$$\begin{bmatrix} a_{12} \\ a_{22} \\ a_{32} \end{bmatrix} = \begin{bmatrix} -0.08333 \\ 1.417 \\ -5.000 \end{bmatrix}$$

So

$$\begin{bmatrix} a_{13} \\ a_{23} \\ a_{33} \end{bmatrix} = \begin{bmatrix} 0.03571 \\ -0.4643 \\ 1.429 \end{bmatrix}$$

Hence
$$\begin{bmatrix} A \end{bmatrix}^{-1} = \begin{bmatrix} 0.04762 & -0.08333 & 0.03571 \\ -0.9524 & 1.417 & -0.4643 \\ 4.571 & -5.000 & 1.429 \end{bmatrix}$$

Now
$$\begin{bmatrix} A \end{bmatrix} \begin{bmatrix} X \end{bmatrix} = \begin{bmatrix} C \end{bmatrix}$$

where
$$\begin{bmatrix} X \end{bmatrix} = \begin{bmatrix} a \\ b \\ c \end{bmatrix}$$
$$\begin{bmatrix} C \end{bmatrix} = \begin{bmatrix} 106.8 \\ 177.2 \\ 279.2 \end{bmatrix}$$

Using the definition of $\begin{bmatrix} A \end{bmatrix}^{-1}$,
$$\begin{bmatrix} A \end{bmatrix}^{-1} \begin{bmatrix} A \end{bmatrix} \begin{bmatrix} X \end{bmatrix} = \begin{bmatrix} A \end{bmatrix}^{-1} \begin{bmatrix} C \end{bmatrix}$$
$$\begin{bmatrix} X \end{bmatrix} = \begin{bmatrix} A \end{bmatrix}^{-1} \begin{bmatrix} C \end{bmatrix}$$
$$\begin{bmatrix} X \end{bmatrix} = \begin{bmatrix} A \end{bmatrix}^{-1} \begin{bmatrix} C \end{bmatrix}$$
$$\begin{bmatrix} 0.04762 & -0.08333 & 0.03571 \\ -0.9524 & 1.417 & -0.4643 \\ 4.571 & -5.000 & 1.429 \end{bmatrix} \begin{bmatrix} 106.8 \\ 177.2 \\ 279.2 \end{bmatrix}$$
$$\begin{bmatrix} a \\ b \\ c \end{bmatrix} = \begin{bmatrix} 0.2900 \\ 19.70 \\ 1.050 \end{bmatrix}$$

So
$$v(t) = at^{2} + bt + c, 5 \le t \le 12$$

$= 0.2900t^2 + 19.70t + 1.050, 5 \le t \le 12$

If the inverse of a square matrix [A] exists, is it unique?

Yes, the inverse of a square matrix is unique, if it exists. The proof is as follows. Assume that the inverse of [A] is [B] and if this inverse is not unique, then let another inverse of [A] exist called [C]. [B] is inverse of [A], then [B][A] = [I]Multiply both sides by [C],

$$[B][A][C] = [I][C] [B][A][C] = [C] Since [C] is inverse of [A], [A][C] = [I] [B][I] = [C] [B] = [C]$$

This shows that [B] and [C] are the same. So inverse of [A] is unique.

INTRODUCTION TO MATRIX ALGEBRA

Topic	Introduction to Matrix Algebra
Summary	Know what a matrix is; Identify special types of matrices; When two
	matrices are equal; Add, subtract and multiply matrices; Learn rules of
	binary operations on matrices; Know what unary operations mean; Find
	the transpose of a square matrix and it relationship to symmetric
	matrices; Setup simultaneous linear equations in matrix form and vice-
	versa; Understand the concept of inverse of a matrix.
Major	General Engineering
Authors	Autar Kaw
Date	March 23, 2010
Web Site	http://numericalmethods.eng.usf.edu