Chapter 04.01
 Introduction to Matrix Algebra

After reading this chapter, you should be able to

1. know what a matrix is,
2. identify special types of matrices,
3. know when two matrices are equal,
4. add, subtract and multiply matrices,
5. rules of binary matrix operations,
6. find transpose of a matrix,
7. find inverse of a matrix and its application to solving simultaneous linear equations.

What is a matrix?

Matrices are everywhere. If you have used a spreadsheet such as Excel or written a table, you have used a matrix. Matrices make presentation of numbers clearer and make calculations easier to program. Look at the matrix below about the sale of tires in a Blowoutr'us store - given by quarter and make of tires.
Tirestone
Michigan

Coparter 1 Quarter 2 \quad Quarter 3 | Quarter 4 |
| :---: |
| Coper |\(\left[\begin{array}{cccc}25 \& 20 \& 3 \& 2

5 \& 10 \& 15 \& 25

6 \& 16 \& 7 \& 27\end{array}\right]\)

If one wants to know how many Copper tires were sold in Quarter 4, we go along the row Copper and column Quarter 4 and find that it is 27.

So what is a matrix?

A matrix is a rectangular array of elements. The elements can be symbolic expressions or numbers. Matrix [A] is denoted by

$$
[\mathrm{A}]=\left[\begin{array}{cccc}
a_{11} & a_{12} & \ldots \ldots . & a_{1 n} \\
a_{21} & a_{22} & \ldots \ldots . & a_{2 n} \\
\vdots & & & \vdots \\
a_{m 1} & a_{m 2} & \ldots \ldots . & a_{m n}
\end{array}\right]
$$

Row i of [A] has n elements and is $\left[\begin{array}{ll}a_{i 1} & a_{i 2}\end{array} \ldots a_{i n}\right]$ and

Column j of [A] has m elements and is $\left[\begin{array}{c}a_{1 j} \\ a_{2 j} \\ \vdots \\ a_{m j}\end{array}\right]$
Each matrix has rows and columns and this defines the size of the matrix. If a matrix [A] has m rows and n columns, the size of the matrix is denoted by $m \times n$. The matrix [A] may also be denoted by $[\mathrm{A}]_{m \times n}$ to show that $[\mathrm{A}]$ is a matrix with m rows and n columns.

Each entry in the matrix is called the entry or element of the matrix and is denoted by $a_{i j}$ where i is the row number and j is the column number of the element.
The matrix for the tire sales example could be denoted by the matrix [A] as

$$
[\mathrm{A}]=\left[\begin{array}{cccc}
25 & 20 & 3 & 2 \\
5 & 10 & 15 & 25 \\
6 & 16 & 7 & 27
\end{array}\right]
$$

There are 3 rows and 4 columns, so the size of the matrix is 3×4. In the above [A] matrix, $a_{34}=27$.

What are the special types of matrices?

Vector: A vector is a matrix that has only one row or one column. There are two types of vectors - row vectors and column vectors.
Row vector: If a matrix has one row, it is called a row vector

$$
[\mathrm{B}]=\left[b_{1} b_{2} \ldots \ldots . b_{m}\right]
$$

and m is the dimension of the row vector.

Example 1

Give an example of a row vector.

Solution

$[B]=\left[\begin{array}{lllll}25 & 20 & 3 & 2 & 0\end{array}\right]$ is an example of a row vector of dimension 5.
Column vector: If a matrix has one column, it is called a column vector

$$
[\mathrm{C}]=\left[\begin{array}{c}
c_{1} \\
\vdots \\
\vdots \\
c_{n}
\end{array}\right]
$$

and n is the dimension of the vector.

Example 2

Give an example of a column vector.

Solution

$$
[C]=\left[\begin{array}{c}
25 \\
5 \\
6
\end{array}\right]
$$

is an example of a column vector of dimension 3 .
Square matrix: If the number of rows (m) of a matrix is equal to the number of columns (n) of the matrix, $(m=n)$, it is called a square matrix. The entries $a_{11}, a_{22}, \ldots . . a_{n n}$ are called the diagonal elements of a square matrix. Sometimes the diagonal of the matrix is also called the principal or main of the matrix.

Example 3

Give an example of a square matrix.

Solution

$$
[\mathrm{A}]=\left[\begin{array}{ccc}
25 & 20 & 3 \\
5 & 10 & 15 \\
6 & 15 & 7
\end{array}\right]
$$

is a square matrix as it has same number of rows and columns, that is, three.
The diagonal elements of [A] are $a_{11}=25, a_{22}=10, a_{33}=7$.

Upper triangular matrix: A $m \times n$ matrix for which $a_{i j}=0, i>j$ is called an upper triangular matrix. That is, all the elements below the diagonal entries are zero.

Example 4

Give an example of an upper triangular matrix.

Solution

$$
[\mathrm{A}]=\left[\begin{array}{ccc}
10 & -7 & 0 \\
0 & -0.001 & 6 \\
0 & 0 & 15005
\end{array}\right]
$$

is an upper triangular matrix.
Lower triangular matrix: A $m \times n$ matrix for which $a_{i j}=0, j>i$ is called a lower triangular matrix. That is, all the elements above the diagonal entries are zero.

Example 5

Give an example of a lower triangular matrix.

Solution

$$
[\mathrm{A}]=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0.3 & 1 & 0 \\
0.6 & 2.5 & 1
\end{array}\right]
$$

is a lower triangular matrix.
Diagonal matrix: A square matrix with all non-diagonal elements equal to zero is called a diagonal matrix, that is, only the diagonal entries of the square matrix can be non-zero, ($a_{i j}=0, i \neq j$).

Example 6

Give examples of a diagonal matrix.

Solution

$$
[\mathrm{A}]=\left[\begin{array}{ccc}
3 & 0 & 0 \\
0 & 2.1 & 0 \\
0 & 0 & 5
\end{array}\right]
$$

is a diagonal matrix.
Any or all the diagonal entries of a diagonal matrix can be zero.
For example

$$
[\mathrm{A}]=\left[\begin{array}{ccc}
3 & 0 & 0 \\
0 & 2.1 & 0 \\
0 & 0 & 0
\end{array}\right]
$$

is also a diagonal matrix.
Identity matrix: A diagonal matrix with all diagonal elements equal to one is called an identity matrix, $\left(a_{i j}=0, i \neq j\right.$; and $a_{i i}=1$ for all $\left.i\right)$.

Example 7

Give an example of an identity matrix.

Solution

$$
[\mathrm{A}]=\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

is an identity matrix.
Zero matrix: A matrix whose all entries are zero is called a zero matrix, $\left(a_{i j}=0\right.$ for all i and j).

Example 8

Give examples of a zero matrix.

Solution

$$
\begin{aligned}
& {[\mathrm{A}]=\left[\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]} \\
& {[\mathrm{B}]=\left[\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]} \\
& {[\mathrm{C}]=\left[\begin{array}{llll}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]} \\
& {[\mathrm{D}]=\left[\begin{array}{lll}
0 & 0 & 0
\end{array}\right]}
\end{aligned}
$$

are all examples of a zero matrix.
Tridiagonal matrices: A tridiagonal matrix is a square matrix in which all elements not on the major diagonal, the diagonal above the major diagonal and the diagonal below the major diagonal are zero.

Example 9

Give an example of a tridiagonal matrix.

Solution

$$
[\mathrm{A}]=\left[\begin{array}{llll}
2 & 4 & 0 & 0 \\
2 & 3 & 9 & 0 \\
0 & 0 & 5 & 2 \\
0 & 0 & 3 & 6
\end{array}\right]
$$

is a tridiagonal matrix.

When are two matrices considered to be equal?

Two matrices [A] and [B] are equal if the size of [A] and [B] is the same (number of rows and columns are same for $[\mathrm{A}]$ and $[\mathrm{B}])$ and $a_{i j}=b_{i j}$ for all i and j.

Example 10

What would make

$$
\begin{aligned}
& {[\mathrm{A}]=\left[\begin{array}{ll}
2 & 3 \\
6 & 7
\end{array}\right] \text { to be equal to }} \\
& {[\mathrm{B}]=\left[\begin{array}{cc}
b_{11} & 3 \\
6 & b_{22}
\end{array}\right],}
\end{aligned}
$$

Solution

The two matrices $[A]$ and $[B]$ would be equal if

$$
b_{11}=2, b_{22}=7
$$

How do you add two matrices?

Two matrices [A] and [B] can be added only if they are the same size, then the addition is shown as

$$
[\mathrm{C}]=[\mathrm{A}]+[\mathrm{B}]
$$

where

$$
c_{i j}=a_{i j}+b_{i j}
$$

Example 11

Add two matrices

$$
\begin{aligned}
& {[\mathrm{A}]=\left[\begin{array}{lll}
5 & 2 & 3 \\
1 & 2 & 7
\end{array}\right]} \\
& {[B]=\left[\begin{array}{ccc}
6 & 7 & -2 \\
3 & 5 & 19
\end{array}\right]}
\end{aligned}
$$

Solution

$$
\begin{aligned}
{[\mathrm{C}] } & =[\mathrm{A}]+[\mathrm{B}] \\
& =\left[\begin{array}{ccc}
5 & 2 & 3 \\
1 & 2 & 7
\end{array}\right]+\left[\begin{array}{ccc}
6 & 7 & -2 \\
3 & 5 & 19
\end{array}\right] \\
& =\left[\begin{array}{ccc}
5+6 & 2+7 & 3-2 \\
1+3 & 2+5 & 7+19
\end{array}\right] \\
& =\left[\begin{array}{ccc}
11 & 9 & 1 \\
4 & 7 & 26
\end{array}\right]
\end{aligned}
$$

Example 12

Blowout r'us store has two locations A and B, and their sales of tires are given by make (in rows) and quarters (in columns) as shown below.

$$
\begin{aligned}
& {[\mathrm{A}]=\left[\begin{array}{cccc}
25 & 20 & 3 & 2 \\
5 & 10 & 15 & 25 \\
6 & 16 & 7 & 27
\end{array}\right]} \\
& {[\mathrm{B}]=\left[\begin{array}{cccc}
20 & 5 & 4 & 0 \\
3 & 6 & 15 & 21 \\
4 & 1 & 7 & 20
\end{array}\right]}
\end{aligned}
$$

where the rows represent sale of Tirestone, Michigan and Copper tires and the columns represent the quarter number $-1,2,3,4$. What are the total sales of the two locations by make and quarter?

Solution

$$
\begin{aligned}
{[\mathrm{C}] } & =[\mathrm{A}]+[\mathrm{B}] \\
& =\left[\begin{array}{cccc}
25 & 20 & 3 & 2 \\
5 & 10 & 15 & 25 \\
6 & 16 & 7 & 27
\end{array}\right]+\left[\begin{array}{cccc}
20 & 5 & 4 & 0 \\
3 & 6 & 15 & 21 \\
4 & 1 & 7 & 20
\end{array}\right] \\
& =\left[\begin{array}{cccc}
(25+20) & (20+5) & (3+4) & (2+0) \\
(5+3) & (10+6) & (15+15) & (25+21) \\
(6+4) & (16+1) & (7+7) & (27+20)
\end{array}\right] \\
& =\left[\begin{array}{cccc}
45 & 25 & 7 & 2 \\
8 & 16 & 30 & 46 \\
10 & 17 & 14 & 47
\end{array}\right]
\end{aligned}
$$

So if one wants to know the total number of Copper tires sold in quarter 4 in the two locations, we would look at Row 3 - Column 4 to give

$$
c_{34}=47
$$

How do you subtract two matrices?

Two matrices [A] and [B] can be subtracted only if they are the same size and the subtraction is given by

$$
[\mathrm{D}]=[\mathrm{A}]-[\mathrm{B}]
$$

where

$$
d_{i j}=a_{i j}-b_{i j}
$$

Example 13

Subtract matrix [B] from matrix [A].

$$
\begin{aligned}
& {[\mathrm{A}]=\left[\begin{array}{lll}
5 & 2 & 3 \\
1 & 2 & 7
\end{array}\right]} \\
& {[\mathrm{B}]=\left[\begin{array}{ccc}
6 & 7 & -2 \\
3 & 5 & 19
\end{array}\right]}
\end{aligned}
$$

Solution

$$
\begin{aligned}
{[\mathrm{C}] } & =[\mathrm{A}]-[\mathrm{B}] \\
& =\left[\begin{array}{ccc}
5 & 2 & 3 \\
1 & 2 & 7
\end{array}\right]-\left[\begin{array}{ccc}
6 & 7 & -2 \\
3 & 5 & 19
\end{array}\right] \\
& =\left[\begin{array}{ccc}
5-6 & 2-7 & 3-(-2) \\
1-3 & 2-5 & 7-19
\end{array}\right] \\
& =\left[\begin{array}{ccc}
-1 & -5 & 5 \\
-2 & -3 & -12
\end{array}\right]
\end{aligned}
$$

Example 14

Blowout r'us store has two locations A and B and their sales of tires are given by make (in rows) and quarters (in columns) as shown below.

$$
\begin{aligned}
& {[\mathrm{A}]=\left[\begin{array}{cccc}
25 & 20 & 3 & 2 \\
5 & 10 & 15 & 25 \\
6 & 16 & 7 & 27
\end{array}\right]} \\
& {[\mathrm{B}]=\left[\begin{array}{cccc}
20 & 5 & 4 & 0 \\
3 & 6 & 15 & 21 \\
4 & 1 & 7 & 20
\end{array}\right]}
\end{aligned}
$$

where the rows represent sale of Tirestone, Michigan and Copper tires and the columns represent the quarter number- $1,2,3,4$. How many more tires did store A sell than store B of each brand in each quarter?

Solution

$$
\begin{aligned}
{[\mathrm{D}] } & =[\mathrm{A}]-[\mathrm{B}] \\
& =\left[\begin{array}{cccc}
25 & 20 & 3 & 2 \\
5 & 10 & 15 & 25 \\
6 & 16 & 7 & 27
\end{array}\right]-\left[\begin{array}{cccc}
20 & 5 & 4 & 0 \\
3 & 6 & 15 & 21 \\
4 & 1 & 7 & 20
\end{array}\right] \\
& =\left[\begin{array}{cccc}
25-20 & 20-5 & 3-4 & 2-0 \\
5-3 & 10-6 & 15-15 & 25-21 \\
6-4 & 16-1 & 7-7 & 27-20
\end{array}\right] \\
& =\left[\begin{array}{cccc}
5 & 15 & -1 & 2 \\
2 & 4 & 0 & 4 \\
2 & 15 & 0 & 7
\end{array}\right]
\end{aligned}
$$

So if you want to know how many more Copper Tires were sold in quarter 4 in Store A than Store B, $d_{34}=7$. Note that $d_{13}=-1$ implying that store A sold 1 less Michigan tire than
Store B in quarter 3 .

How do I multiply two matrices?

Two matrices $[A]$ and $[B]$ can be multiplied only if the number of columns of [A] is equal to the number of rows of $[B]$ to give

$$
[\mathrm{C}]_{m \times n}=[\mathrm{A}]_{m \times p}[\mathrm{~B}]_{p \times n}
$$

If [A] is a $m \times p$ matrix and [B] is a $p \times n$ matrix, the resulting matrix [C] is a $m \times n$ matrix.
So how does one calculate the elements of [C] matrix?

$$
\begin{aligned}
c_{i j} & =\sum_{k=1}^{p} a_{i k} b_{k j} \\
& =a_{i 1} b_{1 j}+a_{i 2} b_{2 j}+\ldots \ldots+a_{i p} b_{p j}
\end{aligned}
$$

for each $i=1,2, \ldots \ldots, m$, and $j=1,2, \ldots \ldots, n$.

To put it in simpler terms, the $i_{t h}$ row and $j_{t h}$ column of the $[\mathrm{C}]$ matrix in $[\mathrm{C}]=[\mathrm{A}][\mathrm{B}]$ is calculated by multiplying the $i_{t h}$ row of [A] by the $j_{t h}$ column of [B], that is,

$$
\begin{aligned}
c_{i j} & =\left[a_{i 1} a_{i 2} \ldots \ldots a_{i p}\right]\left[\begin{array}{c}
b_{1 j} \\
b_{2 j} \\
\vdots \\
\vdots \\
b_{p j}
\end{array}\right] \\
& =a_{i 1} b_{1 j}+a_{i 2} b_{2 j}+\ldots \ldots . .+a_{i p} b_{p j} . \\
& =\sum_{k=1}^{p} a_{i k} b_{k j}
\end{aligned}
$$

Example 15

Given

$$
\begin{aligned}
& {[\mathrm{A}]=\left[\begin{array}{lll}
5 & 2 & 3 \\
1 & 2 & 7
\end{array}\right]} \\
& {[\mathrm{B}]=\left[\begin{array}{cc}
3 & -2 \\
5 & -8 \\
9 & -10
\end{array}\right]}
\end{aligned}
$$

find

$$
[\mathrm{C}]=[\mathrm{A}][\mathrm{B}]
$$

Solution

c_{12} can be found by multiplying the first row of [A] by the second column of [B],

$$
\begin{aligned}
c_{12} & =\left[\begin{array}{lll}
5 & 2 & 3
\end{array}\right]\left[\begin{array}{c}
-2 \\
-8 \\
-10
\end{array}\right] \\
& =(5)(-2)+(2)(-8)+(3)(-10) \\
& =-56
\end{aligned}
$$

Similarly, one can find the other elements of [C] to give

$$
[C]=\left[\begin{array}{ll}
52 & -56 \\
76 & -88
\end{array}\right]
$$

Example 16

Blowout r'us store location A and the sales of tires are given by make (in rows) and quarters (in columns) as shown below

$$
[\mathrm{A}]=\left[\begin{array}{cccc}
25 & 20 & 3 & 2 \\
5 & 10 & 15 & 25 \\
6 & 16 & 7 & 27
\end{array}\right]
$$

where the rows represent sale of Tirestone, Michigan and Copper tires and the columns represent the quarter number $-1,2,3,4$. Find the per quarter sales of store A if following are the prices of each tire.

Tirestone $=\$ 33.25$
Michigan $=\$ 40.19$
Copper $=\$ 25.03$

Solution

The answer is given by multiplying the price matrix by the quantity sales of store A . The price matrix is $\left[\begin{array}{lll}33.25 & 40.19 & 25.03\end{array}\right]$, then the per quarter sales of store A would be given by

$$
\begin{aligned}
& {[\mathrm{C}] }=\left[\begin{array}{lll}
33.25 & 40.19 & 25.03
\end{array}\right]\left[\begin{array}{cccc}
25 & 20 & 3 & 2 \\
5 & 10 & 15 & 25 \\
6 & 16 & 7 & 27
\end{array}\right] \\
& \begin{aligned}
c_{i j} & =\sum_{k=1}^{3} a_{i k} b_{k j} \\
c_{11} & =\sum_{k=1}^{3} a_{1 k} b_{k 1} \\
& =a_{11} b_{11}+a_{12} b_{21}+a_{13} b_{31} \\
& =(33.25)(25)+(40.19)(5)+(25.03)(6) \\
& =\$ 1182.38
\end{aligned}
\end{aligned}
$$

Similarly

$$
\begin{aligned}
& c_{12}=\$ 1467.38 \\
& c_{13}=\$ 877.81, \\
& c_{14}=\$ 1747.06
\end{aligned}
$$

So each quarter sales of store A in dollars are given by the four columns of the row vector $[\mathrm{C}]=\left[\begin{array}{llll}1182.38 & 1467.38 & 877.81 & 1747.06\end{array}\right]$
Remember since we are multiplying a 1×3 matrix by a 3×4 matrix, the resulting matrix is a 1×4 matrix.

What is a scalar product of a constant and a matrix?
If [A] is a $n \times n$ matrix and k is a real number, then the scalar product of k and $[\mathrm{A}]$ is another matrix [B], where $b_{i j}=k a_{i j}$.

Example 17

Let $[\mathrm{A}]=\left[\begin{array}{ccc}2.1 & 3 & 2 \\ 5 & 1 & 6\end{array}\right]$. Find $2[\mathrm{~A}]$

Solution

$$
[A]=\left[\begin{array}{ccc}
2.1 & 3 & 2 \\
5 & 1 & 6
\end{array}\right]
$$

Then

$$
\begin{aligned}
2[\mathrm{~A}] & =2\left[\begin{array}{ccc}
2.1 & 3 & 2 \\
5 & 1 & 6
\end{array}\right] \\
& =\left[\begin{array}{ccc}
(2)(2.1) & (2)(3) & (2)(2) \\
(2)(5) & (2)(1) & (2)(6)
\end{array}\right] \\
& =\left[\begin{array}{ccc}
4.2 & 6 & 4 \\
10 & 2 & 12
\end{array}\right]
\end{aligned}
$$

What is a linear combination of matrices?
If $\left.\left[\mathrm{A}_{1}\right],\left[\mathrm{A}_{2}\right], \ldots . \ldots \ldots . ., \mid \mathrm{A}_{p}\right\rfloor$ are matrices of the same size and $k_{1}, k_{2}, \ldots \ldots ., k_{p}$ are scalars, then $k_{1}\left[\mathrm{~A}_{1}\right]+k_{2}\left[\mathrm{~A}_{2}\right]+\ldots \ldots . .+k_{p}\left\lfloor\mathrm{~A}_{p}\right\rfloor$
is called a linear combination of $\left[\mathrm{A}_{1}\right],\left[\mathrm{A}_{2}\right] \cdots \cdots,\left\lfloor\mathrm{A}_{p}\right\rfloor$

Example 18

If

$$
\left[\mathrm{A}_{1}\right]=\left[\begin{array}{lll}
5 & 6 & 2 \\
3 & 2 & 1
\end{array}\right],\left[\mathrm{A}_{2}\right]=\left[\begin{array}{ccc}
2.1 & 3 & 2 \\
5 & 1 & 6
\end{array}\right],\left[\mathrm{A}_{3}\right]=\left[\begin{array}{lll}
0 & 2.2 & 2 \\
3 & 3.5 & 6
\end{array}\right]
$$

then find

$$
\left[\mathrm{A}_{1}\right]+2\left[\mathrm{~A}_{2}\right]-0.5\left[\mathrm{~A}_{3}\right]
$$

Solution

$$
\begin{aligned}
& =\left[\begin{array}{lll}
5 & 6 & 2 \\
3 & 2 & 1
\end{array}\right]+2\left[\begin{array}{ccc}
2.1 & 3 & 2 \\
5 & 1 & 6
\end{array}\right]-0.5\left[\begin{array}{lll}
0 & 2.2 & 2 \\
3 & 3.5 & 6
\end{array}\right] \\
& =\left[\begin{array}{ccc}
5 & 6 & 2 \\
3 & 2 & 1
\end{array}\right]+\left[\begin{array}{ccc}
4.2 & 6 & 4 \\
10 & 2 & 12
\end{array}\right]-\left[\begin{array}{ccc}
0 & 1.1 & 1 \\
1.5 & 1.75 & 3
\end{array}\right] \\
& =\left[\begin{array}{ccc}
9.2 & 10.9 & 5 \\
11.5 & 2.25 & 10
\end{array}\right]
\end{aligned}
$$

What are some of the rules of binary matrix operations?

Commutative law of addition
If [A] and [B] are mxn matrices, then

$$
[\mathrm{A}]+[\mathrm{B}]=[\mathrm{B}]+[\mathrm{A}]
$$

Associate law of addition

If $[\mathrm{A}],[\mathrm{B}]$ and $[\mathrm{C}]$ all are mxn matrices, then

$$
[\mathrm{A}]+([\mathrm{B}]+[\mathrm{C}])=([\mathrm{A}]+[\mathrm{B}])+[\mathrm{C}]
$$

Associate law of multiplication

If [A], [B] and [C] are $m x n, n x p$ and $p x r$ size matrices, respectively, then

$$
[\mathrm{A}]([\mathrm{B}][\mathrm{C}])=([\mathrm{A} I \mathrm{~B})] \mathrm{C}]
$$

and the resulting matrix size on both sides is $m x r$.

Distributive law

If $[\mathrm{A}]$ and $[\mathrm{B}]$ are $m x n$ size matrices, and $[\mathrm{C}]$ and $[\mathrm{D}]$ are $n x p$ size matrices

$$
\begin{aligned}
& {[\mathrm{A}][[\mathrm{C}]+[\mathrm{D}])=[\mathrm{A}][\mathrm{C}]+[\mathrm{A}][\mathrm{D}]} \\
& ([\mathrm{A}]+[\mathrm{B}][\mathrm{C}]=[\mathrm{A}][\mathrm{C}]+[\mathrm{B}][\mathrm{C}]
\end{aligned}
$$

and the resulting matrix size on both sides is $m x p$.

Example 19

Illustrate the associative law of multiplication of matrices using

$$
[\mathrm{A}]=\left[\begin{array}{ll}
1 & 2 \\
3 & 5 \\
0 & 2
\end{array}\right], \quad[\mathrm{B}]=\left[\begin{array}{ll}
2 & 5 \\
9 & 6
\end{array}\right], \quad[\mathrm{C}]=\left[\begin{array}{ll}
2 & 1 \\
3 & 5
\end{array}\right]
$$

Solution

$$
\begin{aligned}
& {[\mathrm{B}][\mathrm{C}]=\left[\begin{array}{ll}
2 & 5 \\
9 & 6
\end{array}\right]\left[\begin{array}{ll}
2 & 1 \\
3 & 5
\end{array}\right]=\left[\begin{array}{ll}
19 & 27 \\
36 & 39
\end{array}\right]} \\
& {[\mathrm{A}][\mathrm{B}][\mathrm{C}]=\left[\begin{array}{ll}
1 & 2 \\
3 & 5 \\
0 & 2
\end{array}\right]\left[\begin{array}{ll}
19 & 27 \\
36 & 39
\end{array}\right]=\left[\begin{array}{cc}
91 & 105 \\
237 & 276 \\
72 & 78
\end{array}\right]} \\
& {[\mathrm{A}][\mathrm{B}]=\left[\begin{array}{ll}
1 & 2 \\
3 & 5 \\
0 & 2
\end{array}\right]\left[\begin{array}{ll}
2 & 5 \\
9 & 6
\end{array}\right]=\left[\begin{array}{ll}
20 & 17 \\
51 & 45 \\
18 & 12
\end{array}\right]} \\
& {[\mathrm{A}][\mathrm{B}][\mathrm{C}]=\left[\begin{array}{ll}
20 & 17 \\
51 & 45 \\
18 & 12
\end{array}\right]\left[\begin{array}{ll}
2 & 1 \\
3 & 5
\end{array}\right]=\left[\begin{array}{cc}
91 & 105 \\
237 & 276 \\
72 & 78
\end{array}\right]}
\end{aligned}
$$

The above illustrates the associate law of multiplication of matrices.

Is $[\mathrm{A}][\mathrm{B}]=[\mathrm{B}][\mathrm{A}]$?

First both operations $[A][B]$ and $[B][A]$ are only possible if $[A]$ and $[B]$ are square matrices of same size. Why? If $[A][B]$ exists, number of columns of $[A]$ has to be same as the number of rows of $[B]$ and if $[B][A]$ exists, number of columns of $[B]$ has to be same as the number of rows of $[\mathrm{A}]$.
Even then in general $[A][B] \neq[B][A]$.

Example 20

Illustrate if $[A][B]=[B][A]$ for the following matrices

$$
[\mathrm{A}]=\left[\begin{array}{ll}
6 & 3 \\
2 & 5
\end{array}\right], \quad[\mathrm{B}]=\left[\begin{array}{cc}
-3 & 2 \\
1 & 5
\end{array}\right]
$$

Solution

$$
\begin{aligned}
{[\mathrm{A}][\mathrm{B}] } & =\left[\begin{array}{ll}
6 & 3 \\
2 & 5
\end{array}\right]\left[\begin{array}{cc}
-3 & 2 \\
1 & 5
\end{array}\right] \\
& =\left[\begin{array}{cc}
-15 & 27 \\
-1 & 29
\end{array}\right] \\
{[\mathrm{B}][\mathrm{A}] } & =\left[\begin{array}{cc}
-3 & 2 \\
1 & 5
\end{array}\right]\left[\begin{array}{ll}
6 & 3 \\
2 & 5
\end{array}\right] \\
& =\left[\begin{array}{cc}
-14 & 1 \\
16 & 28
\end{array}\right] \\
{[\mathrm{A}][\mathrm{B}] } & \neq[\mathrm{B}][\mathrm{A}]
\end{aligned}
$$

Transpose of a matrix: Let [A] be a $m \times n$ matrix. Then [B] is the transpose of the [A] if $b_{j i}=a_{i j}$ for all i and j. That is, the $i^{\text {th }}$ row and the $j^{\text {th }}$ column element of $[\mathrm{A}]$ is the $j^{\text {th }}$ row and $i^{\text {th }}$ column element of $[\mathrm{B}]$. Note, $[\mathrm{B}]$ would be a $n \times m$ matrix. The transpose of $[\mathrm{A}]$ is denoted by $[\mathrm{A}]^{t}$.

Example 21

Find the transpose of

$$
[\mathrm{A}]=\left[\begin{array}{cccc}
25 & 20 & 3 & 2 \\
5 & 10 & 15 & 25 \\
6 & 16 & 7 & 27
\end{array}\right]
$$

Solution

The transpose of [A] is

$$
[\mathrm{A}]^{T}=\left[\begin{array}{ccc}
25 & 5 & 6 \\
20 & 10 & 16 \\
3 & 15 & 7 \\
2 & 25 & 27
\end{array}\right]
$$

Note, the transpose of a row vector is a column vector and the transpose of a column vector is a row vector.

Also, note that the transpose of a transpose of a matrix is the matrix itself, that is,

$$
\left([\mathrm{A}]^{T}\right)^{T}=[\mathrm{A}] . \text { Also, }([\mathrm{A}]+[\mathrm{B}])^{T}=[\mathrm{A}]^{T}+[\mathrm{B}]^{T} ;(c[\mathrm{~A}])^{T}=c[\mathrm{~A}]^{T}
$$

Symmetric matrix: A square matrix [A] with real elements where $a_{i j}=a_{j i}$ for $i=1, \ldots \ldots ., n$ and $j=1, \ldots \ldots, n$ is called a symmetric matrix. This is same as, if $[\mathrm{A}]=[\mathrm{A}]^{T}$, then $[\mathrm{A}]$ is a symmetric matrix.

Example 22

Give an example of a symmetric matrix.

Solution

$$
[\mathrm{A}]=\left[\begin{array}{ccc}
21.2 & 3.2 & 6 \\
3.2 & 21.5 & 8 \\
6 & 8 & 9.3
\end{array}\right]
$$

is a symmetric matrix as $a_{12}=a_{21}=3.2 ; \mathrm{a}_{13}=a_{31}=6$ and $a_{23}=a_{32}=8$.

Matrix algebra is used for solving system of equations. Can you illustrate this concept?

Matrix algebra is used to solve a system of simultaneous linear equations. In fact, for many mathematical procedures such as solution of set of nonlinear equations, interpolation, integration, and differential equations, the solutions reduce to a set of simultaneous linear equations. Let us illustrate with an example for interpolation.

Example 23

The upward velocity of a rocket is given at three different times on the following table

Time, t	Velocity, v
s	$\mathrm{~m} / \mathrm{s}$
5	106.8
8	177.2
12	279.2

The velocity data is approximated by a polynomial as

$$
v(t)=a t^{2}+b t+c, \quad 5 \leq \mathrm{t} \leq 12 .
$$

Set up the equations in matrix form to find the coefficients a, b, c of the velocity profile.

Solution

The polynomial is going through three data points $\left(t_{1}, v_{1}\right),\left(t_{2}, v_{2}\right)$, and $\left(\mathrm{t}_{3}, v_{3}\right)$ where from the above table

$$
\begin{aligned}
& t_{1}=5, v_{1}=106.8 \\
& t_{2}=8, v_{2}=177.2 \\
& t_{3}=12, v_{3}=279.2
\end{aligned}
$$

Requiring that $v(t)=a t^{2}+b t+c$ passes through the three data points gives

$$
\begin{aligned}
& v\left(t_{1}\right)=v_{1}=a t_{1}^{2}+b t_{1}+c \\
& v\left(t_{2}\right)=v_{2}=a t_{2}^{2}+b t_{2}+c \\
& v\left(t_{3}\right)=v_{3}=a t_{3}^{2}+b t_{3}+c
\end{aligned}
$$

Substituting the data $\left(t_{1}, v_{1}\right),\left(t_{2}, v_{2}\right),\left(t_{3}, v_{3}\right)$ gives

$$
\begin{aligned}
& a\left(5^{2}\right)+b(5)+c=106.8 \\
& a\left(8^{2}\right)+b(8)+c=177.2 \\
& a\left(12^{2}\right)+b(12)+c=279.2
\end{aligned}
$$

or

$$
\begin{aligned}
& 25 a+5 b+c=106.8 \\
& 64 a+8 b+c=177.2 \\
& 144 a+12 b+c=279.2
\end{aligned}
$$

This set of equations can be rewritten in the matrix form as

$$
\left[\begin{array}{ccc}
25 a+ & 5 b+ & c \\
64 a+ & 8 b+ & c \\
144 a+ & 12 b+ & c
\end{array}\right]=\left[\begin{array}{l}
106.8 \\
177.2 \\
279.2
\end{array}\right]
$$

The above equation can be written as a linear combination as follows

$$
a\left[\begin{array}{c}
25 \\
64 \\
144
\end{array}\right]+b\left[\begin{array}{c}
5 \\
8 \\
12
\end{array}\right]+c\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]=\left[\begin{array}{l}
106.8 \\
177.2 \\
279.2
\end{array}\right]
$$

and further using matrix multiplications gives

$$
\left[\begin{array}{ccc}
25 & 5 & 1 \\
64 & 8 & 1 \\
144 & 12 & 1
\end{array}\right]\left[\begin{array}{l}
\mathrm{a} \\
\mathrm{~b} \\
\mathrm{c}
\end{array}\right]=\left[\begin{array}{l}
106.8 \\
177.2 \\
279.2
\end{array}\right]
$$

The above is an illustration of why matrix algebra is needed. The complete solution to the set of equations is given later in this chapter.

For a general set of m linear equations and n unknowns,

$$
a_{11} x_{1}+a_{22} x_{2}+\cdots \cdots+a_{1 n} x_{n}=c_{1}
$$

$$
\begin{aligned}
& a_{21} x_{1}+a_{22} x_{2}+\cdots \cdots+a_{2 n} x_{n}=c_{2} \\
& \cdots \\
& \cdots \\
& a_{m 1} x_{1}+a_{m 2} x_{2}+\ldots \ldots \ldots+a_{m n} x_{n}=c_{m}
\end{aligned}
$$

can be rewritten in the matrix form as

$$
\left[\begin{array}{ccccc}
a_{11} & a_{12} & \cdot & \cdot & a_{1 n} \\
a_{21} & a_{22} & \cdot & \cdot & a_{2 n} \\
\vdots & & & & \vdots \\
\vdots & & & & \vdots \\
a_{m 1} & a_{m 2} & \cdot & \cdot & a_{m n}
\end{array}\right]\left[\begin{array}{c}
x_{1} \\
x_{2} \\
\cdot \\
\cdot \\
x_{n}
\end{array}\right]=\left[\begin{array}{c}
c_{1} \\
c_{2} \\
\cdot \\
\cdot \\
c_{m}
\end{array}\right]
$$

Denoting the matrices by $[\mathrm{A}],[\mathrm{X}]$, and $[\mathrm{C}]$, the system of equation is
$[A][X]=[C]$, where $[A]$ is called the coefficient matrix, $[C]$ is called the right hand side vector and $[X]$ is called the solution vector.
Sometimes $[\mathrm{A}][\mathrm{X}]=[\mathrm{C}]$ systems of equations is written in the augmented form. That is

$$
[\mathrm{A} \vdots \mathrm{C}]=\left[\begin{array}{cccc}
a_{11} & a_{12} & \ldots \ldots & a_{1 n} \\
a_{21} & a_{22} & \ldots \ldots & a_{2 n} \\
\vdots & & & \vdots \\
\vdots & & & \vdots \\
a_{m 1} & a_{m 2} & \ldots \ldots & a_{m n} \vdots c_{n}
\end{array}\right]
$$

Can you divide two matrices?

If $[A][B]=[C]$ is defined, it might seem intuitive that $[A]=\frac{[C]}{[B]}$, but matrix division is not defined. However an inverse of a matrix can be defined for certain types of square matrices. The inverse of a square matrix $[A]$, if existing, is denoted by $[A]^{-1}$ such that $[A][A]^{-1}=[I]=$ $[\mathrm{A}]^{-1}[\mathrm{~A}]$.

In other words, let $[\mathrm{A}]$ be a square matrix. If $[\mathrm{B}]$ is another square matrix of same size such that $[\mathrm{B}][\mathrm{A}]=[\mathrm{I}]$, then $[\mathrm{B}]$ is the inverse of $[\mathrm{A}] .[\mathrm{A}]$ is then called to be invertible or nonsingular. If $[\mathrm{A}]^{-1}$ does not exist, $[\mathrm{A}]$ is called to be noninvertible or singular. If $[\mathrm{A}]$ and $[\mathrm{B}]$ are two $n x n$ matrices such that $[\mathrm{B}][\mathrm{A}]=[\mathrm{I}]$, then these statements are also true
a) $[\mathrm{B}]$ is the inverse of [A]
b) $[\mathrm{A}]$ is the inverse of $[\mathrm{B}]$
c) $[\mathrm{A}]$ and $[\mathrm{B}]$ are both invertible
d) $[\mathrm{A}][\mathrm{B}]=[\mathrm{I}]$.
e) $[\mathrm{A}]$ and $[\mathrm{B}]$ are both nonsingular
f) all columns of [A] or [B]are linearly independent
g) all rows of $[\mathrm{A}]$ or $[\mathrm{B}]$ are linearly independent.

Example 24

Show if

$$
[B]=\left[\begin{array}{ll}
3 & 2 \\
5 & 3
\end{array}\right] \text { is the inverse of }[A]=\left[\begin{array}{cc}
-3 & 2 \\
5 & -3
\end{array}\right]
$$

Solution

$$
\begin{aligned}
{[\mathrm{B}][\mathrm{A}] } & =\left[\begin{array}{ll}
3 & 2 \\
5 & 3
\end{array}\right]\left[\begin{array}{cc}
-3 & 2 \\
5 & -3
\end{array}\right] \\
& =\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right] \\
& =[\mathrm{I}]
\end{aligned}
$$

Since $[B][A]=[I],[B]$ is the inverse of $[A]$ and $[A]$ is the inverse of $[B]$. But we can also show that

$$
\begin{aligned}
{[\mathrm{A}][\mathrm{B}] } & =\left[\begin{array}{cc}
-3 & 2 \\
5 & -3
\end{array}\right]\left[\begin{array}{ll}
3 & 2 \\
5 & 3
\end{array}\right] \\
& =\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]=[\mathrm{I}]
\end{aligned}
$$

to show that $[\mathrm{A}]$ is the inverse of $[\mathrm{B}]$.

Can I use the concept of the inverse of a matrix to find the solution of a set of equations

 $[\mathrm{A}][\mathrm{X}]=[\mathrm{C}]$?Yes, if the number of equations is same as the number of unknowns, the coefficient matrix [A] is a square matrix.

Given

$$
[\mathrm{A}][\mathrm{X}]=[\mathrm{C}]
$$

Then, if $[\mathrm{A}]^{-1}$ exists, multiplying both sides by $[\mathrm{A}]^{-1}$.

$$
\begin{aligned}
& {[\mathrm{A}]^{-1}[\mathrm{~A}][\mathrm{X}]=[\mathrm{A}]^{-1}[\mathrm{C}]} \\
& {[\mathrm{I}][\mathrm{X}]=[\mathrm{A}]^{-1}[\mathrm{C}]} \\
& {[\mathrm{X}]=[\mathrm{A}]^{-1}[\mathrm{C}]}
\end{aligned}
$$

This implies that if we are able to find $[\mathrm{A}]^{-1}$, the solution vector of $[\mathrm{A}][\mathrm{X}]=[\mathrm{C}]$ is simply a multiplication of $[\mathrm{A}]^{-1}$ and the right hand side vector, [C].
How do I find the inverse of a matrix?
If [A] is a $n \times n$ matrix, then $[\mathrm{A}]^{-1}$ is a $n \times n$ matrix and according to the definition of inverse of a matrix
$[\mathrm{A}][\mathrm{A}]^{-1}=[\mathrm{I}]$.
Denoting

$$
\left.\begin{array}{l}
{[\mathrm{A}]=\left[\begin{array}{ccccc}
a_{11} & a_{12} & \cdot & \cdot & a_{1 n} \\
a_{21} & a_{22} & \cdot & \cdot & a_{2 n} \\
\cdot & \cdot & \cdot & \cdot & \cdot \\
\cdot & \cdot & \cdot & \cdot & \cdot \\
a_{n 1} & a_{n 2} & \cdot & \cdot & a_{n n}
\end{array}\right]} \\
{[\mathrm{A}]^{-1}=\left[\begin{array}{ccccc}
a_{11}^{\prime} & a_{12}^{\prime} & \cdot & \cdot & a_{1 n}^{\prime} \\
a_{21}^{\prime} & a_{22}^{\prime} & \cdot & \cdot & a_{2 n}^{\prime} \\
\cdot & \cdot & \cdot & \cdot & \cdot \\
\cdot & \cdot & \cdot & \cdot & \cdot \\
a_{n 1}^{\prime} & a_{n 2}^{\prime} & \cdot & \cdot & a_{n n}^{\prime}
\end{array}\right]} \\
{[\mathrm{I}]=\left[\begin{array}{lllll}
1 & 0 & \cdot & \cdot & \cdot \\
0 & 1 & & & 0 \\
0 & & \cdot & & \\
\cdot & & 1 & & \cdot \\
\cdot & & & \cdot & \cdot \\
0 & \cdot & \cdot & \cdot & \cdot
\end{array}\right]}
\end{array}\right]
$$

Using the definition of matrix multiplication, the first column of the $[\mathrm{A}]^{-1}$ matrix can then be found by solving

$$
\left[\begin{array}{ccccc}
a_{11} & a_{12} & \cdot & \cdot & a_{1 n} \\
a_{21} & a_{22} & \cdot & \cdot & a_{2 n} \\
\cdot & \cdot & \cdot & \cdot & \cdot \\
\cdot & \cdot & \cdot & \cdot & \cdot \\
a_{n 1} & a_{n 2} & \cdot & \cdot & a_{n n}
\end{array}\right]\left[\begin{array}{c}
a_{11}^{\prime} \\
a_{21}^{\prime} \\
\cdot \\
\cdot \\
a_{n 1}^{\prime}
\end{array}\right]=\left[\begin{array}{c}
1 \\
0 \\
\cdot \\
\cdot \\
0
\end{array}\right]
$$

Similarly, one can find the other columns of the $[\mathrm{A}]^{-1}$ matrix by changing the right hand side accordingly.

Example 25

The upward velocity of the rocket is given by

Time, t	Velocity, v
s	$\mathrm{~m} / \mathrm{s}$
5	106.8
8	177.2
12	279.2

In an earlier example, we wanted to approximate the velocity profile by

$$
v(t)=a t^{2}+b t+c, \quad 5 \leq 8 \leq 12
$$

We found that the coefficients a, b, c are given by

$$
\left[\begin{array}{ccc}
25 & 5 & 1 \\
64 & 8 & 1 \\
144 & 12 & 1
\end{array}\right]\left[\begin{array}{l}
a \\
b \\
c
\end{array}\right]=\left[\begin{array}{l}
106.8 \\
177.2 \\
279.2
\end{array}\right]
$$

First find the inverse of

$$
[\mathrm{A}]=\left[\begin{array}{ccc}
25 & 5 & 1 \\
64 & 8 & 1 \\
144 & 12 & 1
\end{array}\right]
$$

and then use the definition of inverse to find the coefficients a, b, c.

Solution

If $[\mathrm{A}]^{-1}=\left[\begin{array}{lll}a_{11}^{\prime} & a_{12}^{\prime} & a_{13}^{\prime} \\ a_{21}^{\prime} & a_{22}^{\prime} & a_{23}^{\prime} \\ a_{31}^{\prime} & a_{32}^{\prime} & a_{33}^{\prime}\end{array}\right]$
is the inverse of [A],
Then

$$
\left[\begin{array}{ccc}
25 & 5 & 1 \\
64 & 8 & 1 \\
144 & 12 & 1
\end{array}\right]\left[\begin{array}{lll}
a_{11}^{\prime} & a_{12}^{\prime} & a_{13}^{\prime} \\
a_{21}^{\prime} & a_{22}^{\prime} & a_{23}^{\prime} \\
a_{31}^{\prime} & a_{32}^{\prime} & a_{33}^{\prime}
\end{array}\right]=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

gives three sets of equations

$$
\begin{aligned}
& {\left[\begin{array}{ccc}
25 & 5 & 1 \\
64 & 8 & 1 \\
144 & 12 & 1
\end{array}\right]\left[\begin{array}{l}
a_{11}^{\prime} \\
a_{21}^{\prime} \\
a_{31}^{\prime}
\end{array}\right]=\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]} \\
& {\left[\begin{array}{ccc}
25 & 5 & 1 \\
64 & 8 & 1 \\
144 & 12 & 1
\end{array}\right]\left[\begin{array}{l}
a_{12}^{\prime} \\
a_{22}^{\prime} \\
a_{32}^{\prime}
\end{array}\right]=\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right]} \\
& {\left[\begin{array}{ccc}
25 & 5 & 1 \\
64 & 8 & 1 \\
144 & 12 & 1
\end{array}\right]\left[\begin{array}{l}
a_{13}^{\prime} \\
a_{23}^{\prime} \\
a_{33}^{\prime}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]}
\end{aligned}
$$

Solving the above three sets of equations separately gives

$$
\begin{aligned}
& {\left[\begin{array}{l}
a_{11}^{\prime} \\
a_{21}^{\prime} \\
a_{31}^{\prime}
\end{array}\right]=\left[\begin{array}{c}
0.04762 \\
-0.9524 \\
4.571
\end{array}\right]} \\
& {\left[\begin{array}{l}
a_{12}^{\prime} \\
a_{22}^{\prime} \\
a_{32}^{\prime}
\end{array}\right]=\left[\begin{array}{c}
-0.08333 \\
1.417 \\
-5.000
\end{array}\right]}
\end{aligned}
$$

$$
\left[\begin{array}{c}
a_{13}^{\prime} \\
a_{23}^{\prime} \\
a_{33}^{\prime}
\end{array}\right]=\left[\begin{array}{c}
0.03571 \\
-0.4643 \\
1.429
\end{array}\right]
$$

Hence

$$
[\mathrm{A}]^{-1}=\left[\begin{array}{ccc}
0.04762 & -0.08333 & 0.03571 \\
-0.9524 & 1.417 & -0.4643 \\
4.571 & -5.000 & 1.429
\end{array}\right]
$$

Now

$$
[\mathrm{A}][\mathrm{X}]=[\mathrm{C}]
$$

where

$$
\begin{aligned}
& {[\mathrm{X}]=\left[\begin{array}{l}
a \\
b \\
c
\end{array}\right]} \\
& {[\mathrm{C}]=\left[\begin{array}{l}
106.8 \\
177.2 \\
279.2
\end{array}\right]}
\end{aligned}
$$

Using the definition of $[\mathrm{A}]^{-1}$,

$$
\begin{aligned}
& {[\mathrm{A}]^{-1}[\mathrm{~A}][\mathrm{X}]=[\mathrm{A}]^{-1}[\mathrm{C}]} \\
& {[\mathrm{X}]}
\end{aligned}=[\mathrm{A}]^{-1}[\mathrm{C}] .
$$

$$
\left[\begin{array}{l}
a \\
b \\
c
\end{array}\right]=\left[\begin{array}{c}
0.2900 \\
19.70 \\
1.050
\end{array}\right]
$$

So

$$
\begin{aligned}
v(t) & =a t^{2}+b t+c, 5 \leq \mathrm{t} \leq 12 \\
& =0.2900 t^{2}+19.70 t+1.050,5 \leq \mathrm{t} \leq 12
\end{aligned}
$$

If the inverse of a square matrix [A] exists, is it unique?

Yes, the inverse of a square matrix is unique, if it exists. The proof is as follows. Assume that the inverse of [A] is [B] and if this inverse is not unique, then let another inverse of [A] exist called [C].
$[B]$ is inverse of [A], then
$[\mathrm{B}][\mathrm{A}]=[\mathrm{I}]$
Multiply both sides by [C],
$[\mathrm{B}][\mathrm{A}][\mathrm{C}]=[\mathrm{I}][\mathrm{C}]$
$[\mathrm{B}][\mathrm{A}][\mathrm{C}]=[\mathrm{C}]$
Since $[\mathrm{C}]$ is inverse of $[\mathrm{A}],[\mathrm{A}][\mathrm{C}]=[\mathrm{I}]$
$[\mathrm{B}][\mathrm{I}]=[\mathrm{C}]$
$[\mathrm{B}]=[\mathrm{C}]$
This shows that $[\mathrm{B}]$ and $[\mathrm{C}]$ are the same. So inverse of [A] is unique.

INTRODUCTION TO MATRIX ALGEBRA	
Topic	Introduction to Matrix Algebra
Summary	Know what a matrix is; Identify special types of matrices; When two
	matrices are equal; Add, subtract and multiply matrices; Learn rules of binary operations on matrices; Know what unary operations mean; Find the transpose of a square matrix and it relationship to symmetric
	matrices; Setup simultaneous linear equations in matrix form and vice-
	versa; Understand the concept of inverse of a matrix.
Major	General Engineering
Authors	Autar Kaw
Date	March 23, 2010
Web Site	$\underline{\text { http://numericalmethods.eng.usf.edu }}$

